mscroggs.co.uk
mscroggs.co.uk

subscribe

Comment

Comments

Comments in green were written by me. Comments in blue were not written by me.
(Oops, forgot to put my name in the comment about puzzle 12.) My thoughts for puzzle 12 are below, covered up:

I thought about prime factors. For the full expression to be a square, all prime factors need to appear an even number of times. So to find n, I can see what prime factors in the numerator appear an odd number of times, and divide them out.

Looking at the prime numbers less than 500, any that are >=250 will appear an even number of times in the numerator. For example, 251 will appear in the 251! term, the 252! term, all the way up to the 500! term. That's 250 appearances, which is an even number.

But what about less than 250? Let's look at 241. That will appear in 241! up to 500! (260 times), but it will also appear in 482! up to 500! (19 times), because 482=241*2. So 241 appears 260+19=279 times, which is an odd number. So 241 needs to be divided out. Likewise with numbers less than 241, like 239. I didn't count the number of appearances of all numbers below 241, but I figured that if n=241, the denominator being 241! will divide out all the numbers that need to be divided out. But that didn't work.

So what am I missing? Any hint would be appreciated! Thanks!
Seth Cohen
on /blog/107
               
@Seth Cohen: Hi Seth,

Your analysis about the multiplicity on primes under 250 is key.

One other thing that helped me is I wrote out '500! x 499! x 498! x 497! x ... x 2! x 1!', stared at it, played with different ideas, and eventually saw that I could rewrite it by grouping together pairs of factorials, which I'll detail in the next paragraph.

I was thinking about how to group that expression into squares, and I eventually lucked out and saw I could do this rewrite: 500! x 499! x 498! x 497! x ... x 2! x 1! = 500 x (499!)^2 x 498 x (497!)^2 x ... x 2 x (1!)^2. This opened up the floodgates for me. I was able to find *an* answer for n. I then used the same analysis you proposed and proved it was the *smallest* answer for n. I hope this helps!
(anonymous)
on /blog/107
×1               
@(anonymous): Hi Seth, sorry, I forgot to put my name on my post. I hope it was useful!
Ryan
on /blog/107
               
@Ryan: Got it! I like your method -- just keep eliminating square numbers until you're left with what you need.

I still wanted to figure out why my original method was wrong. And it finally dawned on me:
My mistake was not realizing that my answer of 241 was just a lower bound. The value of n needed to be AT LEAST 241, because my analysis said that 241 needed to be divided out. But any number >241 would also do the job of dividing out 241. So I needed to think about higher numbers too.
Seth Cohen
on /blog/107
×1   ×2   ×1   ×1   ×1   
@Seth Cohen: Even with those hints I just can't seem to get this one!
Steve
on /blog/107
×6   ×6   ×6   ×6   ×6   

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

crossnumbers mean correlation talking maths in public coins crosswords palindromes exponential growth youtube simultaneous equations dates map projections hyperbolic surfaces a gamut of games data visualisation stirling numbers geogebra captain scarlet mathslogicbot people maths weak imposition plastic ratio world cup light stickers arithmetic braiding trigonometry errors crochet php polynomials tmip friendly squares finite group mathsjam countdown martin gardner european cup hannah fry news realhats cross stitch crossnumber statistics games go datasaurus dozen matrix of cofactors triangles big internet math-off reuleaux polygons books sorting machine learning estimation wave scattering kings determinants squares pythagoras matrices matrix multiplication latex 24 hour maths runge's phenomenon binary bempp weather station accuracy bots sport final fantasy dragon curves bubble bobble frobel phd python matrix of minors nine men's morris edinburgh harriss spiral logs interpolation the aperiodical craft inverse matrices preconditioning golden spiral wool christmas zines folding tube maps rugby fractals manchester science festival folding paper gaussian elimination hats pascal's triangle curvature pi approximation day chebyshev numbers finite element method live stream chalkdust magazine tennis misleading statistics noughts and crosses flexagons quadrilaterals sound newcastle logo graph theory javascript anscombe's quartet football pi advent calendar chess cambridge graphs fonts recursion video games dinosaurs regular expressions oeis pac-man london underground speed gather town reddit propositional calculus data game show probability ucl convergence royal baby national lottery game of life ternary raspberry pi royal institution programming error bars boundary element methods numerical analysis signorini conditions guest posts fence posts approximation inline code sobolev spaces christmas card menace rhombicuboctahedron platonic solids puzzles pizza cutting databet radio 4 manchester mathsteroids hexapawn draughts london computational complexity standard deviation matt parker asteroids logic golden ratio geometry turtles gerry anderson bodmas electromagnetic field dataset probability

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025