mscroggs.co.uk
mscroggs.co.uk

subscribe

Comment

Comments

Comments in green were written by me. Comments in blue were not written by me.
(Oops, forgot to put my name in the comment about puzzle 12.) My thoughts for puzzle 12 are below, covered up:

I thought about prime factors. For the full expression to be a square, all prime factors need to appear an even number of times. So to find n, I can see what prime factors in the numerator appear an odd number of times, and divide them out.

Looking at the prime numbers less than 500, any that are >=250 will appear an even number of times in the numerator. For example, 251 will appear in the 251! term, the 252! term, all the way up to the 500! term. That's 250 appearances, which is an even number.

But what about less than 250? Let's look at 241. That will appear in 241! up to 500! (260 times), but it will also appear in 482! up to 500! (19 times), because 482=241*2. So 241 appears 260+19=279 times, which is an odd number. So 241 needs to be divided out. Likewise with numbers less than 241, like 239. I didn't count the number of appearances of all numbers below 241, but I figured that if n=241, the denominator being 241! will divide out all the numbers that need to be divided out. But that didn't work.

So what am I missing? Any hint would be appreciated! Thanks!
Seth Cohen
on /blog/107
               
@Seth Cohen: Hi Seth,

Your analysis about the multiplicity on primes under 250 is key.

One other thing that helped me is I wrote out '500! x 499! x 498! x 497! x ... x 2! x 1!', stared at it, played with different ideas, and eventually saw that I could rewrite it by grouping together pairs of factorials, which I'll detail in the next paragraph.

I was thinking about how to group that expression into squares, and I eventually lucked out and saw I could do this rewrite: 500! x 499! x 498! x 497! x ... x 2! x 1! = 500 x (499!)^2 x 498 x (497!)^2 x ... x 2 x (1!)^2. This opened up the floodgates for me. I was able to find *an* answer for n. I then used the same analysis you proposed and proved it was the *smallest* answer for n. I hope this helps!
(anonymous)
on /blog/107
×1               
@(anonymous): Hi Seth, sorry, I forgot to put my name on my post. I hope it was useful!
Ryan
on /blog/107
               
@Ryan: Got it! I like your method -- just keep eliminating square numbers until you're left with what you need.

I still wanted to figure out why my original method was wrong. And it finally dawned on me:
My mistake was not realizing that my answer of 241 was just a lower bound. The value of n needed to be AT LEAST 241, because my analysis said that 241 needed to be divided out. But any number >241 would also do the job of dividing out 241. So I needed to think about higher numbers too.
Seth Cohen
on /blog/107
×1   ×2   ×1   ×1   ×1   
@Seth Cohen: Even with those hints I just can't seem to get this one!
Steve
on /blog/107
×6   ×6   ×6   ×6   ×6   

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

graph theory golden spiral inverse matrices folding paper php coins cambridge ucl data finite element method pac-man dragon curves pi latex rugby youtube preconditioning puzzles live stream accuracy error bars london underground misleading statistics bempp flexagons guest posts geometry hexapawn data visualisation reuleaux polygons the aperiodical crochet electromagnetic field friendly squares correlation edinburgh hats mathsteroids mathslogicbot pythagoras approximation talking maths in public runge's phenomenon a gamut of games christmas european cup palindromes logs crosswords big internet math-off stirling numbers regular expressions bodmas royal institution python chebyshev errors fonts radio 4 polynomials tmip standard deviation video games frobel dates numbers final fantasy speed arithmetic propositional calculus sobolev spaces binary folding tube maps royal baby fence posts graphs programming martin gardner determinants quadrilaterals noughts and crosses triangles national lottery draughts light datasaurus dozen ternary weather station wave scattering harriss spiral dinosaurs finite group game of life crossnumbers logo football reddit dataset bots hannah fry stickers inline code interpolation kings news pi approximation day braiding matrix of minors advent calendar exponential growth databet golden ratio signorini conditions curvature books matrix of cofactors go numerical analysis manchester weak imposition crossnumber estimation matt parker mathsjam computational complexity realhats hyperbolic surfaces sorting rhombicuboctahedron zines craft cross stitch games christmas card squares mean countdown menace london machine learning anscombe's quartet nine men's morris bubble bobble chess turtles 24 hour maths gather town geogebra recursion sound logic simultaneous equations matrices asteroids captain scarlet boundary element methods map projections oeis phd sport pizza cutting newcastle convergence platonic solids tennis raspberry pi wool trigonometry matrix multiplication people maths javascript plastic ratio probability world cup gerry anderson manchester science festival fractals chalkdust magazine game show probability gaussian elimination pascal's triangle statistics

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025