mscroggs.co.uk
mscroggs.co.uk

subscribe

Comment

Comments

Comments in green were written by me. Comments in blue were not written by me.
(Oops, forgot to put my name in the comment about puzzle 12.) My thoughts for puzzle 12 are below, covered up:

I thought about prime factors. For the full expression to be a square, all prime factors need to appear an even number of times. So to find n, I can see what prime factors in the numerator appear an odd number of times, and divide them out.

Looking at the prime numbers less than 500, any that are >=250 will appear an even number of times in the numerator. For example, 251 will appear in the 251! term, the 252! term, all the way up to the 500! term. That's 250 appearances, which is an even number.

But what about less than 250? Let's look at 241. That will appear in 241! up to 500! (260 times), but it will also appear in 482! up to 500! (19 times), because 482=241*2. So 241 appears 260+19=279 times, which is an odd number. So 241 needs to be divided out. Likewise with numbers less than 241, like 239. I didn't count the number of appearances of all numbers below 241, but I figured that if n=241, the denominator being 241! will divide out all the numbers that need to be divided out. But that didn't work.

So what am I missing? Any hint would be appreciated! Thanks!
Seth Cohen
on /blog/107
               
@Seth Cohen: Hi Seth,

Your analysis about the multiplicity on primes under 250 is key.

One other thing that helped me is I wrote out '500! x 499! x 498! x 497! x ... x 2! x 1!', stared at it, played with different ideas, and eventually saw that I could rewrite it by grouping together pairs of factorials, which I'll detail in the next paragraph.

I was thinking about how to group that expression into squares, and I eventually lucked out and saw I could do this rewrite: 500! x 499! x 498! x 497! x ... x 2! x 1! = 500 x (499!)^2 x 498 x (497!)^2 x ... x 2 x (1!)^2. This opened up the floodgates for me. I was able to find *an* answer for n. I then used the same analysis you proposed and proved it was the *smallest* answer for n. I hope this helps!
(anonymous)
on /blog/107
×1               
@(anonymous): Hi Seth, sorry, I forgot to put my name on my post. I hope it was useful!
Ryan
on /blog/107
               
@Ryan: Got it! I like your method -- just keep eliminating square numbers until you're left with what you need.

I still wanted to figure out why my original method was wrong. And it finally dawned on me:
My mistake was not realizing that my answer of 241 was just a lower bound. The value of n needed to be AT LEAST 241, because my analysis said that 241 needed to be divided out. But any number >241 would also do the job of dividing out 241. So I needed to think about higher numbers too.
Seth Cohen
on /blog/107
×1   ×2   ×1   ×1   ×1   
@Seth Cohen: Even with those hints I just can't seem to get this one!
Steve
on /blog/107
×6   ×6   ×6   ×6   ×6   

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

bubble bobble propositional calculus machine learning martin gardner braiding inverse matrices determinants royal institution phd datasaurus dozen the aperiodical european cup guest posts folding tube maps rhombicuboctahedron approximation speed oeis nine men's morris stirling numbers royal baby tennis matrix of minors mathsteroids go flexagons trigonometry binary graph theory chess boundary element methods cambridge advent calendar misleading statistics games pascal's triangle matt parker mean exponential growth computational complexity numerical analysis game of life polynomials runge's phenomenon radio 4 dragon curves people maths triangles football countdown london underground sound electromagnetic field geometry hannah fry tmip fence posts wave scattering pythagoras statistics palindromes pac-man pizza cutting fonts anscombe's quartet ternary plastic ratio platonic solids reuleaux polygons cross stitch gaussian elimination books logic manchester mathsjam logs ucl finite group errors numbers reddit pi approximation day sorting rugby mathslogicbot youtube live stream javascript edinburgh dataset preconditioning chebyshev matrix of cofactors world cup hexapawn estimation gerry anderson stickers graphs probability menace national lottery squares talking maths in public sobolev spaces data a gamut of games 24 hour maths convergence simultaneous equations folding paper golden ratio standard deviation correlation captain scarlet php matrices hats frobel turtles draughts python hyperbolic surfaces interpolation latex light wool raspberry pi gather town christmas card programming matrix multiplication christmas pi accuracy bempp golden spiral recursion puzzles bodmas dinosaurs harriss spiral finite element method databet crochet weak imposition asteroids crossnumber manchester science festival london quadrilaterals fractals weather station arithmetic noughts and crosses geogebra coins video games data visualisation error bars newcastle sport craft game show probability inline code final fantasy signorini conditions big internet math-off map projections dates zines news curvature realhats chalkdust magazine logo

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024