mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Logic bot

 2014-11-26 
Last week, @mathslogicbot (also now on Mastodon: @logicbot@mathstodon.xyz) started the long task of tweeting every tautology in propositional calculus. This post explains what this means and how I did it.

What is propositional calculus?

Propositional calculus is a form of mathematical logic, in which the formulae (the logical 'sentences') are made up of the following symbols:

Formulae

Formulae are defined recursively using the following rules:
For example, \((a\vee b)\), \(\neg f\) and \(((a\vee b)\rightarrow\neg f)\) are formulae.
Each of the variables is assigned a value of either "true" or "false", which leads to each formula being either true or false:

Tautologies

A tautology is a formula that is true for any assigment of truth values to the variables. For example:
\((a\vee \neg a)\) is a tautology because: if \(a\) is true then \(a\) or \(\neg a\) is true; and if \(a\) is false, then \(\neg a\) is true, so \(a\) or \(\neg a\) is true.
\((a\leftrightarrow a)\) is a tautology because: if \(a\) is true then \(a\) and \(a\) are both true; and if \(a\) is false then \(a\) and \(a\) are both false.
\((a\wedge b)\) is not a tautology because if \(a\) is true and \(b\) is false, then it is false.
The following are a few more tautologies. Can you explain why they are always true?

Python

If you want to play with the Logic Bot code, you can download it here.
In order to find all tautologies less than 140 characters long, one method is to first generate all formulae less than 140 characters then check to see if they are tautologies. (This is almost certainly not the fastest way to do this, but as long as it generates tautolgies faster than I want to tweet them, it doesn't matter how fast it runs.) I am doing this on a Raspberry Pi using Python in the following way.

All formulae

The following code is writing all the formulae that are less than 140 characters to a file called formulae.
 python 
from os.path import join
path = "/home/pi/logic"
First import any modules needed and set the path where the file will be saved.
 python 
def candidate(formula):
    global formulae

    if len(formula) <= 140 and formula not in formulae:
        formulae.append(formula)
        print formula
        f = open(join(path,"formulae"),"a")
        f.write(formula + "\n")
        f.close()
This function checks that a formula is not already in my list of formulae and shorter than 140 characters, then adds it to the list and writes it into the file.
 python 
variables = ["a""b""c""d""e""f""g""h""i""j",
             "k""l""m""n""o""p""q""r""s""t",
             "u""v""w""x""y""z""@""#""2""3",
             "4""5""6""7""8""9"]
This line says which characters are going to be used as variables. It is impossible to write a formula in less that 140 characters with more than 36 different variables so these will be sufficient. I haven't used 0 and 1 as these are used to represent false and true later.
 python 
= open(join(path,"formulae"))
formulae = f.readlines()
for i in range(0,len(formulae)):
    formulae[i] = formulae[i].strip("\n")
f.close()
These lines load the formulae already found from the file. This is needed if I have to stop the code then want to continue.
 python 
oldlen = 0
newlen = 26

while oldlen != newlen:
    for f in formulae + variables:
        candidate("-" + f)
    for f in formulae + variables:
        for g in formulae:
            for star in ["I""F""N""U"]:
                candidate("(" + f + star + g + ")")
    oldlen = newlen
    newlen = len(formulae)
The code inside the while loop goes through every formula already found and puts "-" in front of it, then takes every pair of formulae already found and puts "I", "F", "N" or "U" between them. These characters are used instead of the logical symbols as using the unicode characters leads to numerous python errors. The candidate function as defined above then adds them to the list (if they are suitable). This continues until the loop does not make the list of formulae longer as this will occur when all formulae are found.
 python 
= open(join(path,"formulae"),"a")
f.write("#FINISHED#")
f.close()
Once the loop has finished this will add the string "#FINISHED#" to the file. This will tell the truth-checking code when the it has checked all the formulae (opposed to having checked all those generated so far).

Tautologies

Now that the above code is finding all formulae, I need to test which of these are tautologies. This can be done by checking whether every assignment of truth values to the variables will lead to the statement being true.
 python 
from os.path import join
path = "/home/pi/logic"
First import any modules needed and set the path where the file will be saved.
 python 
def next(ar,i=0):
    global cont
    if i < len(ar):
        if ar[i] == "0":
            ar[i] = "1"
        else:
            ar[i] = "0"
            ar = next(ar, i + 1)
    else:
        cont = False
    return ar
Given an assignment of truth values, this function will return the next assignment, setting cont to False if all the assignments have been tried.
 python 
def solve(lo):
    lo = lo.replace("-0""1")
    lo = lo.replace("-1""0")

    lo = lo.replace("(0I0)""1")
    lo = lo.replace("(0I1)""1")
    lo = lo.replace("(1I0)""0")
    lo = lo.replace("(1I1)""1")

    lo = lo.replace("(0F0)""1")
    lo = lo.replace("(0F1)""0")
    lo = lo.replace("(1F0)""0")
    lo = lo.replace("(1F1)""1")

    lo = lo.replace("(0N0)""0")
    lo = lo.replace("(0N1)""0")
    lo = lo.replace("(1N0)""0")
    lo = lo.replace("(1N1)""1")

    lo = lo.replace("(0U0)""0")
    lo = lo.replace("(0U1)""1")
    lo = lo.replace("(1U0)""1")
    lo = lo.replace("(1U1)""1")

    return lo
This function will replace all instances of "NOT TRUE" with "FALSE" and so on. It will be called repeatedly until a formula is reduced to true or false.
 python 
= open(join(path,"formulae"))
formulae = f.readlines()
f.close()

= open(join(path,"donet"))
= int(f.read())
f.close()

variables = ["a""b""c""d""e""f""g""h""i""j",
             "k""l""m""n""o""p""q""r""s""t",
             "u""v""w""x""y""z""@""#""2""3",
             "4""5""6""7""8""9"]
These lines read the formulae from the file they are saved in and load how many have been checked if this script has been restarted. The the variables are set.
 python 
while formulae[-1] != "#FINISHED#" or i < len(formulae) - 1:
    if i < len(formulae):
        formula = formulae[i].strip("\n")
These lines will loop through all formulae until "#FINISHED#" is reached.
 python 
        insofar = True
        inA = []
        fail = False
        for a in variables:
            if a not in formula:
                insofar = False
            elif not insofar:
                fail = True
                break
            else:
                inA.append(a)
Here, the code checks that if a variable is in the formula, then all the previous variables are in the formula. This will prevent the Twitter bot from repeating many tautologies that are the same except for the variable a being replaced by b (although there will still be some repeats like this. Can you work out what these will be?).
 python 
        if not fail:
            valA = ["0"]*len(inA)
            cont = True
            taut = True
            while cont and taut:
                feval = formula
                for j in range(0,len(inA)):
                    feval = feval.replace(inA[j],valA[j])
                while feval not in ["0""1"]:
                    feval = solve(feval)
                if feval != "1":
                    taut = False
                valA = next(valA)
            if taut:
                f = open(join(path,"true"),"a")
                f.write(str(formula) + "\n")
                f.close()
    
        i += 1
        f = open(join(path,"donet"),"w")
        f.write(str(i))
        f.close()
Now, the formula is tested to see if it is true for every assignment of truth values. If it is, it is added to the file containing tautologies. Then the number of formulae that have been checked is written to a file (in case the script is stopped then resumed).
 python 
    else:
        f = open(join(path,"formulae"))
        formulae = f.readlines()
        f.close()
If the end of the formulae file is reached, then the file is re-loaded to include all the formulae found while this code was running.

Tweeting

Finally, I wrote a code that tweets the next item in the file full of tautologies every three hours (after replacing the characters with the correct unicode characters).

How long will it take?

Now that the bot is running, it is natural to ask how long it will take to tweet all the tautologies.
While it is possible to calculate the number of formulae with 140 characters or less, there is no way to predict how many of these will be tautologies without checking. However, the bot currently has over 13 years of tweets lines up. And all the tautologies so far are under 30 characters so there are a lot more to come...
Edit: Updated time left to tweet.
×3      ×4      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
In part two you say a_{n+4} >= 2*a_n, and you have 13 years worth of tweets of length (say) 15-30. so there are 26 years worth length 19-34 characters, 13*2^n years worth of tweets of length between (15 + 4n) and (30 + 4n). In particular, setting n = 27, we have 13*2^{27} = 1744830464 years worth of tweets of length 123-138. I hope you have nice sturdy hardware!

Christian
×3   ×3   ×3   ×3   ×3     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "naidem" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

football frobel hyperbolic surfaces phd statistics game show probability dates asteroids matrices big internet math-off royal institution zines pythagoras binary stickers reuleaux polygons preconditioning advent calendar london realhats noughts and crosses craft draughts curvature sobolev spaces mean programming harriss spiral computational complexity pi errors interpolation video games pi approximation day crochet polynomials european cup gaussian elimination numbers inline code databet standard deviation ternary boundary element methods edinburgh matt parker probability manchester logic rugby finite group determinants pizza cutting misleading statistics flexagons graph theory matrix multiplication dragon curves signorini conditions cambridge go chess logs braiding chebyshev estimation arithmetic oeis live stream talking maths in public php inverse matrices a gamut of games exponential growth gather town electromagnetic field dataset finite element method geometry accuracy nine men's morris mathslogicbot dinosaurs bodmas speed matrix of cofactors stirling numbers final fantasy coins books london underground trigonometry countdown squares latex hexapawn folding paper convergence light people maths newcastle fence posts datasaurus dozen recursion crossnumber turtles 24 hour maths youtube game of life weak imposition pac-man tennis games geogebra logo hannah fry fractals fonts chalkdust magazine machine learning graphs platonic solids plastic ratio triangles data visualisation golden spiral palindromes the aperiodical ucl matrix of minors world cup sorting bubble bobble national lottery christmas manchester science festival approximation puzzles tmip quadrilaterals sport mathsteroids python raspberry pi reddit wave scattering sound data numerical analysis captain scarlet guest posts christmas card martin gardner royal baby menace rhombicuboctahedron news gerry anderson folding tube maps error bars bempp cross stitch mathsjam wool propositional calculus correlation hats anscombe's quartet javascript simultaneous equations golden ratio pascal's triangle map projections weather station runge's phenomenon radio 4

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024