mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-02-06 
This is the third post in a series of posts about matrix methods.
Yet again, we want to solve \(\mathbf{A}\mathbf{x}=\mathbf{b}\), where \(\mathbf{A}\) is a (known) matrix, \(\mathbf{b}\) is a (known) vector, and \(\mathbf{x}\) is an unknown vector.
In the previous post in this series, we used Gaussian elimination to invert a matrix. You may, however, have been taught an alternative method for calculating the inverse of a matrix. This method has four steps:
  1. Find the determinants of smaller blocks of the matrix to find the "matrix of minors".
  2. Multiply some of the entries by -1 to get the "matrix of cofactors".
  3. Transpose the matrix.
  4. Divide by the determinant of the matrix you started with.

An example

As an example, we will find the inverse of the following matrix.
$$\begin{pmatrix} 1&-2&4\\ -2&3&-2\\ -2&2&2 \end{pmatrix}.$$
The result of the four steps above is the calculation
$$\frac1{\det\begin{pmatrix} 1&-2&4\\ -2&3&-2\\ -2&2&2 \end{pmatrix} }\begin{pmatrix} \det\begin{pmatrix}3&-2\\2&2\end{pmatrix}& -\det\begin{pmatrix}-2&4\\2&2\end{pmatrix}& \det\begin{pmatrix}-2&4\\3&-2\end{pmatrix}\\ -\det\begin{pmatrix}-2&-2\\-2&2\end{pmatrix}& \det\begin{pmatrix}1&4\\-2&2\end{pmatrix}& -\det\begin{pmatrix}1&4\\-2&-2\end{pmatrix}\\ \det\begin{pmatrix}-2&3\\-2&2\end{pmatrix}& -\det\begin{pmatrix}1&-2\\-2&2\end{pmatrix}& \det\begin{pmatrix}1&-2\\-2&3\end{pmatrix} \end{pmatrix}.$$
Calculating the determinants gives $$\frac12 \begin{pmatrix} 10&12&-8\\ 8&10&-6\\ 2&2&-1 \end{pmatrix},$$ which simplifies to
$$ \begin{pmatrix} 5&6&-4\\ 4&5&-3\\ 1&1&-\tfrac12 \end{pmatrix}.$$

How many operations

This method can be used to find the inverse of a matrix of any size. Using this method on an \(n\times n\) matrix will require:
  1. Finding the determinant of \(n^2\) different \((n-1)\times(n-1)\) matrices.
  2. Multiplying \(\left\lfloor\tfrac{n}2\right\rfloor\) of these matrices by -1.
  3. Calculating the determinant of a \(n\times n\) matrix.
  4. Dividing \(n^2\) numbers by this determinant.
If \(d_n\) is the number of operations needed to find the determinant of an \(n\times n\) matrix, the total number of operations for this method is
$$n^2d_{n-1} + \left\lfloor\tfrac{n}2\right\rfloor + d_n + n^2.$$

How many operations to find a determinant

If you work through the usual method of calculating the determinant by calculating determinants of smaller blocks the combining them, you can work out that the number of operations needed to calculate a determinant in this way is \(\mathcal{O}(n!)\). For large values of \(n\), this is significantly larger than any power of \(n\).
There are other methods of calculating determinants: the fastest of these is \(\mathcal{O}(n^{2.373})\). For large \(n\), this is significantly smaller than \(\mathcal{O}(n!)\).

How many operations

Even if the quick \(\mathcal{O}(n^{2.373})\) method for calculating determinants is used, the number of operations required to invert a matrix will be of the order of
$$n^2(n-1)^{2.373} + \left\lfloor\tfrac{n}2\right\rfloor + n^{2.373} + n^2.$$
This is \(\mathcal{O}(n^{4.373})\), and so for large matrices this will be slower than Gaussian elimination, which was \(\mathcal{O}(n^3)\).
In fact, this method could only be faster than Gaussian elimination if you discovered a method of finding a determinant faster than \(\mathcal{O}(n)\). This seems highly unlikely to be possible, as an \(n\times n\) matrix has \(n^2\) entries and we should expect to operate on each of these at least once.
So, for large matrices, Gaussian elimination looks like it will always be faster, so you can safely forget this four-step method.
Previous post in series
This is the third post in a series of posts about matrix methods.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "cosine" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

gaussian elimination misleading statistics craft anscombe's quartet sport pi graph theory databet sound triangles platonic solids zines arithmetic mean stickers data statistics numbers folding paper noughts and crosses wool london underground bubble bobble geogebra interpolation bodmas programming probability video games error bars ucl christmas 24 hour maths turtles royal baby football chalkdust magazine pac-man dataset logo data visualisation matrix multiplication bempp gather town realhats braiding folding tube maps world cup london golden ratio mathslogicbot christmas card speed sobolev spaces frobel signorini conditions datasaurus dozen oeis matrix of minors finite element method dragon curves palindromes plastic ratio manchester science festival machine learning national lottery graphs inline code computational complexity python hexapawn martin gardner electromagnetic field hyperbolic surfaces phd reddit menace tennis approximation captain scarlet draughts recursion advent calendar tmip matt parker a gamut of games javascript royal institution the aperiodical simultaneous equations european cup light standard deviation fence posts reuleaux polygons guest posts rugby pascal's triangle numerical analysis sorting convergence runge's phenomenon matrix of cofactors mathsjam cambridge mathsteroids game show probability countdown errors pi approximation day newcastle geometry people maths chess crossnumber fractals finite group news hats fonts raspberry pi curvature squares boundary element methods matrices exponential growth puzzles dinosaurs quadrilaterals radio 4 crochet weather station game of life determinants cross stitch golden spiral harriss spiral polynomials stirling numbers big internet math-off map projections pizza cutting accuracy estimation live stream flexagons logic inverse matrices binary correlation games wave scattering edinburgh go manchester youtube trigonometry php hannah fry asteroids pythagoras dates propositional calculus logs nine men's morris weak imposition ternary talking maths in public coins rhombicuboctahedron final fantasy latex books chebyshev gerry anderson preconditioning

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024