mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2014-06-21 
With World Cup fever taking over, you may have forgotten that Wimbledon is just a few days away.

Tennis scoring

Tennis matches are split into sets (three sets for ladies' matches, five sets for men's), which are in turn split into games. The players take it in turns to serve for a game. The scoring in a game is probably best explained with a flowchart (click to enlarge):
To win a set, a player must win at least six games and two more games than their opponent. If the score reaches six games all, then a tie break is played. In this tie break, the first player to win at least seven points and two points more than their opponent wins. In the final set there is no tie break, so matches can last a long time.

Winning with the smallest share of points

Due to the way tennis is split into sets and games, the player who wins the most points will not necessarily win the match. This got me thinking: what is the smallest proportion of points which can be won while still winning the tennis match?
First, let's consider a men's match. In order to win with the lowest proportion of points, our player should let his opponent win two sets without winning a point and win the other three sets. In the two lost sets, the opponent should win 0-6 taking every point: in total the opponent will win 48 points in these sets.
Leaving the final set for now, the other two sets are won by our player. To win these with the smallest proportion of the points, they should be won 7-6 on a tie break. In the 6 lost games, the opponent should take all the points. In the won games and the tie break, our player should win by two points with the lowest total score. (Winning with more than the lowest total score will mean both players win an equal number of extra points, moving the proportion of points our player wins closer to 50%, higher than it needs to be.)
Therefore, our player will win 4 points out of 6 in the games he wins, win 0 out of 4 points in the games he loses and wins the tie break 7 points to 5. This means that in total our player will 62 points out of 144 in the two won sets.
For the same reason as above, the final set should be won with the lowest total score: 6-4. Using the same scores for each game, our player wins 24 points out of 52.
Overall, our player has won 86 points out of 244, a mere 35% of the points.
If the match is a ladies' match then the same analysis will work, but with each player winning one less set. This gives our player 55 points out of 148, 37% of the points.
This result demonstrates why tennis remains exciting through the whole match. The way tennis is split into sets and games means that our opponent can win 65% of the points but if the pressure gets to them at the most important points, our player can still win the match. This makes for a far more interesting competition than a simple race to one hundred points which could quickly become a foregone conclusion.

Comparing players with serving stats

During tennis matches, players are often compared using statistics such as the percentages of serves which are successful. Imagine a match between Player A and Player B.
In the first set, Player A and Player B are successful with 100% and 92% of their serves respectively. In the second set, these figures are 56% and 48%. Player A clearly looks to be the better server, as they have a higher percentage in each set. However if we look at the two sets in more detail:
Player APlayer B
First Set20/2067/73
Second Set45/8013/27
Total65/10080/100
Table showing successful serves/total serves.
Overall, Player B has an 80% serve success rate, while Player A only manages 65%.
This is an example of Simpson's paradox: a trend which appears in the set-by-set data disappears when the data is combined. This occurs because when we look at the set-by-set percentages, the total number of serves is not taken into account: Player A served more in the second set so their overall percentage will be closer to 56%; Player B served more in the first set so their overall percentage will be closer to 92%.
Tags: sport, tennis, news
×1      ×1      ×1      ×1      ×2
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "nogaxeh" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

quadrilaterals arithmetic sound kings correlation platonic solids crosswords golden spiral advent calendar hats newcastle bodmas palindromes puzzles weather station programming javascript datasaurus dozen rugby chebyshev oeis simultaneous equations gerry anderson braiding craft royal institution football raspberry pi geometry mean folding tube maps pi approximation day games live stream mathsjam guest posts tennis light polynomials computational complexity logic matrix of minors 24 hour maths harriss spiral frobel crochet estimation youtube golden ratio bots london underground reuleaux polygons logs dinosaurs crossnumbers go video games gaussian elimination sorting wave scattering realhats chess people maths anscombe's quartet national lottery final fantasy recursion latex approximation big internet math-off fence posts pythagoras boundary element methods european cup geogebra graphs ucl error bars matrix multiplication menace london phd chalkdust magazine matrices regular expressions numerical analysis martin gardner fonts probability determinants draughts cross stitch bempp christmas mathsteroids statistics sobolev spaces radio 4 dragon curves pizza cutting countdown accuracy runge's phenomenon preconditioning standard deviation flexagons noughts and crosses machine learning pi databet map projections speed propositional calculus logo folding paper captain scarlet hannah fry talking maths in public asteroids exponential growth fractals coins hyperbolic surfaces rhombicuboctahedron world cup reddit manchester interpolation binary ternary christmas card python books dates errors squares data zines graph theory stirling numbers turtles finite group friendly squares inline code weak imposition sport mathslogicbot tmip hexapawn nine men's morris signorini conditions electromagnetic field data visualisation news triangles cambridge matrix of cofactors crossnumber game show probability pac-man misleading statistics bubble bobble pascal's triangle plastic ratio stickers inverse matrices trigonometry game of life php dataset wool numbers edinburgh manchester science festival matt parker convergence royal baby finite element method a gamut of games curvature gather town the aperiodical

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025