mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-02-06 
This is the third post in a series of posts about matrix methods.
Yet again, we want to solve \(\mathbf{A}\mathbf{x}=\mathbf{b}\), where \(\mathbf{A}\) is a (known) matrix, \(\mathbf{b}\) is a (known) vector, and \(\mathbf{x}\) is an unknown vector.
In the previous post in this series, we used Gaussian elimination to invert a matrix. You may, however, have been taught an alternative method for calculating the inverse of a matrix. This method has four steps:
  1. Find the determinants of smaller blocks of the matrix to find the "matrix of minors".
  2. Multiply some of the entries by -1 to get the "matrix of cofactors".
  3. Transpose the matrix.
  4. Divide by the determinant of the matrix you started with.

An example

As an example, we will find the inverse of the following matrix.
$$\begin{pmatrix} 1&-2&4\\ -2&3&-2\\ -2&2&2 \end{pmatrix}.$$
The result of the four steps above is the calculation
$$\frac1{\det\begin{pmatrix} 1&-2&4\\ -2&3&-2\\ -2&2&2 \end{pmatrix} }\begin{pmatrix} \det\begin{pmatrix}3&-2\\2&2\end{pmatrix}& -\det\begin{pmatrix}-2&4\\2&2\end{pmatrix}& \det\begin{pmatrix}-2&4\\3&-2\end{pmatrix}\\ -\det\begin{pmatrix}-2&-2\\-2&2\end{pmatrix}& \det\begin{pmatrix}1&4\\-2&2\end{pmatrix}& -\det\begin{pmatrix}1&4\\-2&-2\end{pmatrix}\\ \det\begin{pmatrix}-2&3\\-2&2\end{pmatrix}& -\det\begin{pmatrix}1&-2\\-2&2\end{pmatrix}& \det\begin{pmatrix}1&-2\\-2&3\end{pmatrix} \end{pmatrix}.$$
Calculating the determinants gives $$\frac12 \begin{pmatrix} 10&12&-8\\ 8&10&-6\\ 2&2&-1 \end{pmatrix},$$ which simplifies to
$$ \begin{pmatrix} 5&6&-4\\ 4&5&-3\\ 1&1&-\tfrac12 \end{pmatrix}.$$

How many operations

This method can be used to find the inverse of a matrix of any size. Using this method on an \(n\times n\) matrix will require:
  1. Finding the determinant of \(n^2\) different \((n-1)\times(n-1)\) matrices.
  2. Multiplying \(\left\lfloor\tfrac{n}2\right\rfloor\) of these matrices by -1.
  3. Calculating the determinant of a \(n\times n\) matrix.
  4. Dividing \(n^2\) numbers by this determinant.
If \(d_n\) is the number of operations needed to find the determinant of an \(n\times n\) matrix, the total number of operations for this method is
$$n^2d_{n-1} + \left\lfloor\tfrac{n}2\right\rfloor + d_n + n^2.$$

How many operations to find a determinant

If you work through the usual method of calculating the determinant by calculating determinants of smaller blocks the combining them, you can work out that the number of operations needed to calculate a determinant in this way is \(\mathcal{O}(n!)\). For large values of \(n\), this is significantly larger than any power of \(n\).
There are other methods of calculating determinants: the fastest of these is \(\mathcal{O}(n^{2.373})\). For large \(n\), this is significantly smaller than \(\mathcal{O}(n!)\).

How many operations

Even if the quick \(\mathcal{O}(n^{2.373})\) method for calculating determinants is used, the number of operations required to invert a matrix will be of the order of
$$n^2(n-1)^{2.373} + \left\lfloor\tfrac{n}2\right\rfloor + n^{2.373} + n^2.$$
This is \(\mathcal{O}(n^{4.373})\), and so for large matrices this will be slower than Gaussian elimination, which was \(\mathcal{O}(n^3)\).
In fact, this method could only be faster than Gaussian elimination if you discovered a method of finding a determinant faster than \(\mathcal{O}(n)\). This seems highly unlikely to be possible, as an \(n\times n\) matrix has \(n^2\) entries and we should expect to operate on each of these at least once.
So, for large matrices, Gaussian elimination looks like it will always be faster, so you can safely forget this four-step method.
Previous post in series
This is the third post in a series of posts about matrix methods.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "linear" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

national lottery stickers correlation chebyshev dates quadrilaterals speed tennis crochet chess hats mean data visualisation mathslogicbot bempp machine learning electromagnetic field binary menace realhats runge's phenomenon matrix of cofactors palindromes pizza cutting polynomials dragon curves manchester science festival error bars fence posts asteroids estimation numerical analysis preconditioning raspberry pi christmas card simultaneous equations draughts mathsjam finite element method go pi christmas sport golden ratio nine men's morris wave scattering crossnumber programming boundary element methods final fantasy datasaurus dozen trigonometry errors news flexagons gather town mathsteroids weather station pascal's triangle folding paper exponential growth books golden spiral game of life turtles zines stirling numbers graphs cross stitch puzzles pythagoras captain scarlet london underground latex dataset hyperbolic surfaces databet wool manchester logs fonts youtube bodmas matrix multiplication radio 4 royal baby graph theory hexapawn sobolev spaces chalkdust magazine plastic ratio live stream php talking maths in public statistics rugby numbers ternary logic anscombe's quartet coins geogebra folding tube maps standard deviation hannah fry probability dinosaurs data sound harriss spiral martin gardner craft newcastle recursion oeis matrix of minors matt parker big internet math-off approximation reddit fractals pac-man misleading statistics determinants convergence python propositional calculus gerry anderson ucl geometry logo javascript inline code edinburgh royal institution finite group advent calendar weak imposition matrices world cup accuracy map projections computational complexity phd braiding squares football game show probability reuleaux polygons bubble bobble games signorini conditions 24 hour maths european cup guest posts light tmip countdown triangles a gamut of games video games frobel curvature arithmetic cambridge gaussian elimination noughts and crosses inverse matrices interpolation sorting the aperiodical people maths platonic solids pi approximation day london rhombicuboctahedron

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024