mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-02-06 
This is the third post in a series of posts about matrix methods.
Yet again, we want to solve \(\mathbf{A}\mathbf{x}=\mathbf{b}\), where \(\mathbf{A}\) is a (known) matrix, \(\mathbf{b}\) is a (known) vector, and \(\mathbf{x}\) is an unknown vector.
In the previous post in this series, we used Gaussian elimination to invert a matrix. You may, however, have been taught an alternative method for calculating the inverse of a matrix. This method has four steps:
  1. Find the determinants of smaller blocks of the matrix to find the "matrix of minors".
  2. Multiply some of the entries by -1 to get the "matrix of cofactors".
  3. Transpose the matrix.
  4. Divide by the determinant of the matrix you started with.

An example

As an example, we will find the inverse of the following matrix.
$$\begin{pmatrix} 1&-2&4\\ -2&3&-2\\ -2&2&2 \end{pmatrix}.$$
The result of the four steps above is the calculation
$$\frac1{\det\begin{pmatrix} 1&-2&4\\ -2&3&-2\\ -2&2&2 \end{pmatrix} }\begin{pmatrix} \det\begin{pmatrix}3&-2\\2&2\end{pmatrix}& -\det\begin{pmatrix}-2&4\\2&2\end{pmatrix}& \det\begin{pmatrix}-2&4\\3&-2\end{pmatrix}\\ -\det\begin{pmatrix}-2&-2\\-2&2\end{pmatrix}& \det\begin{pmatrix}1&4\\-2&2\end{pmatrix}& -\det\begin{pmatrix}1&4\\-2&-2\end{pmatrix}\\ \det\begin{pmatrix}-2&3\\-2&2\end{pmatrix}& -\det\begin{pmatrix}1&-2\\-2&2\end{pmatrix}& \det\begin{pmatrix}1&-2\\-2&3\end{pmatrix} \end{pmatrix}.$$
Calculating the determinants gives $$\frac12 \begin{pmatrix} 10&12&-8\\ 8&10&-6\\ 2&2&-1 \end{pmatrix},$$ which simplifies to
$$ \begin{pmatrix} 5&6&-4\\ 4&5&-3\\ 1&1&-\tfrac12 \end{pmatrix}.$$

How many operations

This method can be used to find the inverse of a matrix of any size. Using this method on an \(n\times n\) matrix will require:
  1. Finding the determinant of \(n^2\) different \((n-1)\times(n-1)\) matrices.
  2. Multiplying \(\left\lfloor\tfrac{n}2\right\rfloor\) of these matrices by -1.
  3. Calculating the determinant of a \(n\times n\) matrix.
  4. Dividing \(n^2\) numbers by this determinant.
If \(d_n\) is the number of operations needed to find the determinant of an \(n\times n\) matrix, the total number of operations for this method is
$$n^2d_{n-1} + \left\lfloor\tfrac{n}2\right\rfloor + d_n + n^2.$$

How many operations to find a determinant

If you work through the usual method of calculating the determinant by calculating determinants of smaller blocks the combining them, you can work out that the number of operations needed to calculate a determinant in this way is \(\mathcal{O}(n!)\). For large values of \(n\), this is significantly larger than any power of \(n\).
There are other methods of calculating determinants: the fastest of these is \(\mathcal{O}(n^{2.373})\). For large \(n\), this is significantly smaller than \(\mathcal{O}(n!)\).

How many operations

Even if the quick \(\mathcal{O}(n^{2.373})\) method for calculating determinants is used, the number of operations required to invert a matrix will be of the order of
$$n^2(n-1)^{2.373} + \left\lfloor\tfrac{n}2\right\rfloor + n^{2.373} + n^2.$$
This is \(\mathcal{O}(n^{4.373})\), and so for large matrices this will be slower than Gaussian elimination, which was \(\mathcal{O}(n^3)\).
In fact, this method could only be faster than Gaussian elimination if you discovered a method of finding a determinant faster than \(\mathcal{O}(n)\). This seems highly unlikely to be possible, as an \(n\times n\) matrix has \(n^2\) entries and we should expect to operate on each of these at least once.
So, for large matrices, Gaussian elimination looks like it will always be faster, so you can safely forget this four-step method.
Previous post in series
This is the third post in a series of posts about matrix methods.
×3      ×3      ×3      ×2      ×2
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "i" then "n" then "t" then "e" then "g" then "e" then "r" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

london underground python news machine learning determinants errors manchester bots people maths advent calendar anscombe's quartet logs error bars interpolation london accuracy sound cambridge finite element method runge's phenomenon probability pi approximation day convergence the aperiodical friendly squares gerry anderson noughts and crosses crochet craft reuleaux polygons exponential growth royal institution big internet math-off flexagons bubble bobble a gamut of games dragon curves phd latex matrix multiplication hannah fry numerical analysis stickers nine men's morris gather town graphs talking maths in public fractals countdown harriss spiral game show probability electromagnetic field finite group approximation golden spiral dataset sobolev spaces crossnumber tennis ucl chalkdust magazine simultaneous equations reddit hats zines christmas mathsjam puzzles rhombicuboctahedron final fantasy raspberry pi game of life radio 4 fence posts quadrilaterals football sport weather station folding tube maps manchester science festival tmip correlation graph theory palindromes inverse matrices oeis boundary element methods kings plastic ratio frobel european cup javascript dates triangles pythagoras live stream arithmetic hexapawn books binary christmas card games php misleading statistics world cup go speed statistics signorini conditions pizza cutting dinosaurs mathsteroids platonic solids sorting realhats logo programming databet weak imposition edinburgh wave scattering map projections fonts matrix of cofactors pac-man national lottery stirling numbers light standard deviation gaussian elimination folding paper regular expressions mathslogicbot squares draughts coins cross stitch wool chess datasaurus dozen data visualisation chebyshev ternary geogebra rugby matrix of minors asteroids numbers youtube geometry 24 hour maths logic captain scarlet menace turtles polynomials matt parker hyperbolic surfaces bempp data braiding newcastle pascal's triangle recursion preconditioning guest posts golden ratio bodmas inline code propositional calculus royal baby computational complexity matrices video games mean pi martin gardner trigonometry curvature estimation

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025