mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-02-06 
This is the third post in a series of posts about matrix methods.
Yet again, we want to solve \(\mathbf{A}\mathbf{x}=\mathbf{b}\), where \(\mathbf{A}\) is a (known) matrix, \(\mathbf{b}\) is a (known) vector, and \(\mathbf{x}\) is an unknown vector.
In the previous post in this series, we used Gaussian elimination to invert a matrix. You may, however, have been taught an alternative method for calculating the inverse of a matrix. This method has four steps:
  1. Find the determinants of smaller blocks of the matrix to find the "matrix of minors".
  2. Multiply some of the entries by -1 to get the "matrix of cofactors".
  3. Transpose the matrix.
  4. Divide by the determinant of the matrix you started with.

An example

As an example, we will find the inverse of the following matrix.
$$\begin{pmatrix} 1&-2&4\\ -2&3&-2\\ -2&2&2 \end{pmatrix}.$$
The result of the four steps above is the calculation
$$\frac1{\det\begin{pmatrix} 1&-2&4\\ -2&3&-2\\ -2&2&2 \end{pmatrix} }\begin{pmatrix} \det\begin{pmatrix}3&-2\\2&2\end{pmatrix}& -\det\begin{pmatrix}-2&4\\2&2\end{pmatrix}& \det\begin{pmatrix}-2&4\\3&-2\end{pmatrix}\\ -\det\begin{pmatrix}-2&-2\\-2&2\end{pmatrix}& \det\begin{pmatrix}1&4\\-2&2\end{pmatrix}& -\det\begin{pmatrix}1&4\\-2&-2\end{pmatrix}\\ \det\begin{pmatrix}-2&3\\-2&2\end{pmatrix}& -\det\begin{pmatrix}1&-2\\-2&2\end{pmatrix}& \det\begin{pmatrix}1&-2\\-2&3\end{pmatrix} \end{pmatrix}.$$
Calculating the determinants gives $$\frac12 \begin{pmatrix} 10&12&-8\\ 8&10&-6\\ 2&2&-1 \end{pmatrix},$$ which simplifies to
$$ \begin{pmatrix} 5&6&-4\\ 4&5&-3\\ 1&1&-\tfrac12 \end{pmatrix}.$$

How many operations

This method can be used to find the inverse of a matrix of any size. Using this method on an \(n\times n\) matrix will require:
  1. Finding the determinant of \(n^2\) different \((n-1)\times(n-1)\) matrices.
  2. Multiplying \(\left\lfloor\tfrac{n}2\right\rfloor\) of these matrices by -1.
  3. Calculating the determinant of a \(n\times n\) matrix.
  4. Dividing \(n^2\) numbers by this determinant.
If \(d_n\) is the number of operations needed to find the determinant of an \(n\times n\) matrix, the total number of operations for this method is
$$n^2d_{n-1} + \left\lfloor\tfrac{n}2\right\rfloor + d_n + n^2.$$

How many operations to find a determinant

If you work through the usual method of calculating the determinant by calculating determinants of smaller blocks the combining them, you can work out that the number of operations needed to calculate a determinant in this way is \(\mathcal{O}(n!)\). For large values of \(n\), this is significantly larger than any power of \(n\).
There are other methods of calculating determinants: the fastest of these is \(\mathcal{O}(n^{2.373})\). For large \(n\), this is significantly smaller than \(\mathcal{O}(n!)\).

How many operations

Even if the quick \(\mathcal{O}(n^{2.373})\) method for calculating determinants is used, the number of operations required to invert a matrix will be of the order of
$$n^2(n-1)^{2.373} + \left\lfloor\tfrac{n}2\right\rfloor + n^{2.373} + n^2.$$
This is \(\mathcal{O}(n^{4.373})\), and so for large matrices this will be slower than Gaussian elimination, which was \(\mathcal{O}(n^3)\).
In fact, this method could only be faster than Gaussian elimination if you discovered a method of finding a determinant faster than \(\mathcal{O}(n)\). This seems highly unlikely to be possible, as an \(n\times n\) matrix has \(n^2\) entries and we should expect to operate on each of these at least once.
So, for large matrices, Gaussian elimination looks like it will always be faster, so you can safely forget this four-step method.
Previous post in series
This is the third post in a series of posts about matrix methods.
×3      ×3      ×3      ×2      ×2
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "ratio" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

bubble bobble mathslogicbot newcastle guest posts dataset exponential growth oeis sport radio 4 hyperbolic surfaces databet boundary element methods menace bodmas 24 hour maths manchester mean coins golden spiral mathsjam graph theory sorting go dates books machine learning error bars chess computational complexity the aperiodical youtube errors curvature folding tube maps video games reuleaux polygons preconditioning binary anscombe's quartet talking maths in public games big internet math-off weak imposition gerry anderson manchester science festival finite group php bempp weather station matt parker chalkdust magazine nine men's morris national lottery fractals polynomials a gamut of games geogebra turtles flexagons data visualisation latex european cup crochet pac-man news ucl inline code stickers trigonometry palindromes asteroids phd inverse matrices quadrilaterals interpolation pythagoras pi approximation day determinants light royal baby matrices christmas friendly squares braiding sobolev spaces realhats numbers propositional calculus hexapawn misleading statistics correlation christmas card javascript captain scarlet game of life stirling numbers cross stitch logo cambridge tmip geometry standard deviation edinburgh noughts and crosses fence posts final fantasy platonic solids arithmetic electromagnetic field speed gaussian elimination matrix of minors tennis puzzles pi triangles estimation logic raspberry pi harriss spiral finite element method people maths kings london zines martin gardner runge's phenomenon matrix multiplication squares game show probability wool advent calendar live stream football ternary dinosaurs rhombicuboctahedron fonts bots datasaurus dozen countdown royal institution accuracy london underground pascal's triangle draughts chebyshev sound convergence wave scattering world cup pizza cutting signorini conditions statistics dragon curves numerical analysis golden ratio graphs map projections crosswords folding paper approximation probability recursion regular expressions python hannah fry craft crossnumbers gather town rugby mathsteroids hats plastic ratio programming simultaneous equations reddit crossnumber matrix of cofactors logs data frobel

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025