mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-03-31 
Recently, you've probably seen a lot of graphs that look like this:
The graph above shows something that is growing exponentially: its equation is \(y=kr^x\), for some constants \(k\) and \(r\). The value of the constant \(r\) is very important, as it tells you how quickly the value is going to grow. Using a graph of some data, it is difficult to get an anywhere-near-accurate approximation of \(r\).
The following plot shows three different exponentials. It's very difficult to say anything about them except that they grow very quickly above around \(x=15\).
\(y=2^x\), \(y=40\times 1.5^x\), and \(y=0.002\times3^x\)
It would be nice if we could plot these in a way that their important properties—such as the value of the ratio \(r\)—were more clearly evident from the graph. To do this, we start by taking the log of both sides of the equation:
$$\log y=\log(kr^x)$$
Using the laws of logs, this simplifies to:
$$\log y=\log k+x\log r$$
This is now the equation of a straight line, \(\hat{y}=m\hat{x}+c\), with \(\hat{y}=\log y\), \(\hat{x}=x\), \(m=\log r\) and \(c=\log k\). So if we plot \(x\) against \(\log y\), we should get a straight line with gradient \(\log r\). If we plot the same three exponentials as above using a log-scaled \(y\)-axis, we get:
\(y=2^x\), \(y=40\times 1.5^x\), and \(y=0.002\times3^x\) with a log-scaled \(y\)-axis
From this picture alone, it is very clear that the blue exponential has the largest value of \(r\), and we could quickly work out a decent approximation of this value by calculating 10 (or the base of the log used if using a different log) to the power of the gradient.

Log-log plots

Exponential growth isn't the only situation where scaling the axes is beneficial. In my research in finite and boundary element methods, it is common that the error of the solution \(e\) is given in terms of a grid parameter \(h\) by a polynomial of the form \(e=ah^k\), for some constants \(a\) and \(k\).
We are often interested in the value of the power \(k\). If we plot \(e\) against \(h\), it's once again difficult to judge the value of \(k\) from the graph alone. The following graph shows three polynomials.
\(y=x^2\), \(y=x^{1.5}\), and \(y=0.5x^3\)
Once again is is difficult to judge any of the important properties of these. To improve this, we once again begin by taking the log of each side of the equation:
$$\log e=\log (ah^k)$$
Applying the laws of logs this time gives:
$$\log e=\log a+k\log h$$
This is now the equation of a straight line, \(\hat{y}=m\hat{x}+c\), with \(\hat{y}=\log e\), \(\hat{x}=\log h\), \(m=k\) and \(c=\log a\). So if we plot \(\log x\) against \(\log y\), we should get a straight line with gradient \(k\).
Doing this for the same three curves as above gives the following plot.
\(y=x^2\), \(y=x^{1.5}\), and \(y=0.5x^3\) with log-scaled \(x\)- and \(y\)-axes
It is easy to see that the blue line has the highest value of \(k\) (as it has the highest gradient, and we could get a decent approximation of this value by finding the line's gradient.

As well as making it easier to get good approximations of important parameters, making curves into straight lines in this way also makes it easier to plot the trend of real data. Drawing accurate exponentials and polynomials is hard at the best of times; and real data will not exactly follow the curve, so drawing an exponential or quadratic of best fit will be an even harder task. By scaling the axes first though, this task simplifies to drawing a straight line through the data; this is much easier.
So next time you're struggling with an awkward curve, why not try turning it into a straight line first.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "s" then "e" then "g" then "m" then "e" then "n" then "t" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

golden ratio pascal's triangle national lottery hexapawn dragon curves noughts and crosses geometry chebyshev standard deviation misleading statistics squares menace sobolev spaces people maths boundary element methods interpolation edinburgh inline code advent calendar crossnumber manchester science festival pi approximation day light golden spiral mathsjam manchester rugby folding tube maps hyperbolic surfaces trigonometry mathslogicbot newcastle countdown ternary final fantasy gaussian elimination fractals asteroids triangles stirling numbers go gerry anderson curvature football data weak imposition recursion latex big internet math-off graphs world cup inverse matrices statistics draughts platonic solids exponential growth sorting databet talking maths in public graph theory flexagons matrix of cofactors craft electromagnetic field royal baby finite element method crochet matrices numbers royal institution errors simultaneous equations dates frobel probability oeis dataset radio 4 braiding speed computational complexity martin gardner london underground coins wool christmas matrix multiplication machine learning error bars tmip video games books phd folding paper sport plastic ratio approximation reuleaux polygons propositional calculus logic rhombicuboctahedron bubble bobble pi game of life accuracy live stream christmas card raspberry pi datasaurus dozen pythagoras programming finite group binary the aperiodical geogebra chess python signorini conditions fonts cross stitch bodmas news realhats quadrilaterals preconditioning european cup pizza cutting matt parker ucl cambridge php chalkdust magazine logs puzzles youtube logo runge's phenomenon map projections a gamut of games palindromes javascript anscombe's quartet data visualisation polynomials 24 hour maths bempp gather town fence posts mathsteroids mean estimation arithmetic stickers tennis weather station correlation sound captain scarlet determinants convergence nine men's morris wave scattering london hannah fry hats numerical analysis pac-man games matrix of minors harriss spiral dinosaurs zines turtles guest posts game show probability reddit

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024