mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Logical contradictions

 2016-10-08 
During my Electromagnetic Field talk this year, I spoke about @mathslogicbot, my Twitter bot that is working its way through the tautologies in propositional calculus. My talk included my conjecture that the number of tautologies of length \(n\) is an increasing sequence (except when \(n=8\)). After my talk, Henry Segerman suggested that I also look at the number of contradictions of length \(n\) to look for insights.
A contradiction is the opposite of a tautology: it is a formula that is False for every assignment of truth values to the variables. For example, here are a few contradictions:
$$\neg(a\leftrightarrow a)$$ $$\neg(a\rightarrow a)$$ $$(\neg a\wedge a)$$ $$(\neg a\leftrightarrow a)$$
The first eleven terms of the sequence whose \(n\)th term is the number of contradictions of length \(n\) are:
$$0, 0, 0, 0, 0, 6, 2, 20, 6, 127, 154$$
This sequence is A277275 on OEIS. A list of contractions can be found here.
For the same reasons as the sequence of tautologies, I would expect this sequence to be increasing. Surprisingly, it is not increasing for small values of \(n\), but I again conjecture that it is increasing after a certain point.

Properties of the sequences

There are some properties of the two sequences that we can show. Let \(a(n)\) be the number of tautolgies of length \(n\) and let \(b(n)\) be the number of contradictions of length \(n\).
First, the number of tautologies and contradictions, \(a(n)+b(n)\), (A277276) is an increasing sequence. This is due to the facts that \(a(n+1)\geq b(n)\) and \(b(n+1)\geq a(n)\), as every tautology of length \(n\) becomes a contraction of length \(n+1\) by appending a \(\neg\) to be start and vice versa.
This implies that for each \(n\), at most one of \(a\) and \(b\) can be decreasing at \(n\), as if both were decreasing, then \(a+b\) would be decreasing. Sadly, this doesn't seem to give us a way to prove the conjectures, but it is a small amount of progress towards them.

Similar posts

Logic bot, pt. 2
Logic bot
Interesting tautologies
How OEISbot works

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "oitar" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jul 2020

Happy π+√3-3 Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

craft signorini conditions stickers books boundary element methods gaussian elimination london convergence manchester final fantasy hats binary talking maths in public geometry mathslogicbot javascript latex programming logic squares news light reuleaux polygons sound accuracy error bars weak imposition manchester science festival european cup inline code big internet math-off pizza cutting world cup twitter tmip wool arithmetic triangles pac-man estimation mathsteroids chebyshev radio 4 phd dates hannah fry graphs geogebra dragon curves polynomials numerical analysis games misleading statistics machine learning wave scattering mathsjam video games matrices coins propositional calculus graph theory python football fractals probability golden spiral tennis gerry anderson london underground braiding go bempp finite element method matrix of minors reddit asteroids raspberry pi captain scarlet advent calendar pi matrix of cofactors determinants approximation game show probability php simultaneous equations the aperiodical sobolev spaces royal baby christmas frobel sorting dataset preconditioning noughts and crosses data map projections quadrilaterals exponential growth interpolation logs golden ratio curvature ternary statistics bubble bobble countdown rhombicuboctahedron chess christmas card draughts ucl harriss spiral national lottery royal institution computational complexity bodmas chalkdust magazine plastic ratio martin gardner inverse matrices cross stitch electromagnetic field data visualisation menace palindromes puzzles oeis flexagons hexapawn folding tube maps people maths sport weather station pythagoras nine men's morris realhats speed pi approximation day cambridge a gamut of games rugby game of life folding paper matrix multiplication matt parker platonic solids trigonometry

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020