mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Blog

Logical contradictions

 2016-10-08 
During my Electromagnetic Field talk this year, I spoke about @mathslogicbot (now reloated to @logicbot@mathstodon.xyz and @logicbot.bsky.social), my Twitter bot that is working its way through the tautologies in propositional calculus. My talk included my conjecture that the number of tautologies of length \(n\) is an increasing sequence (except when \(n=8\)). After my talk, Henry Segerman suggested that I also look at the number of contradictions of length \(n\) to look for insights.
A contradiction is the opposite of a tautology: it is a formula that is False for every assignment of truth values to the variables. For example, here are a few contradictions:
$$\neg(a\leftrightarrow a)$$ $$\neg(a\rightarrow a)$$ $$(\neg a\wedge a)$$ $$(\neg a\leftrightarrow a)$$
The first eleven terms of the sequence whose \(n\)th term is the number of contradictions of length \(n\) are:
$$0, 0, 0, 0, 0, 6, 2, 20, 6, 127, 154$$
This sequence is A277275 on OEIS. A list of contractions can be found here.
For the same reasons as the sequence of tautologies, I would expect this sequence to be increasing. Surprisingly, it is not increasing for small values of \(n\), but I again conjecture that it is increasing after a certain point.

Properties of the sequences

There are some properties of the two sequences that we can show. Let \(a(n)\) be the number of tautolgies of length \(n\) and let \(b(n)\) be the number of contradictions of length \(n\).
First, the number of tautologies and contradictions, \(a(n)+b(n)\), (A277276) is an increasing sequence. This is due to the facts that \(a(n+1)\geq b(n)\) and \(b(n+1)\geq a(n)\), as every tautology of length \(n\) becomes a contraction of length \(n+1\) by appending a \(\neg\) to be start and vice versa.
This implies that for each \(n\), at most one of \(a\) and \(b\) can be decreasing at \(n\), as if both were decreasing, then \(a+b\) would be decreasing. Sadly, this doesn't seem to give us a way to prove the conjectures, but it is a small amount of progress towards them.
Edit: Added Mastodon and Bluesky links
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "hexagon" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Dec 2024

A regular expression Christmas puzzle
Christmas card 2024

Nov 2024

Christmas (2024) is coming!

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

statistics european cup chess fence posts sport machine learning news squares error bars inverse matrices royal institution golden ratio craft the aperiodical php radio 4 binary oeis braiding matrix of cofactors propositional calculus menace exponential growth phd bodmas hyperbolic surfaces bempp folding tube maps games matrix of minors stirling numbers crossnumber cambridge accuracy cross stitch turtles matrix multiplication hannah fry golden spiral national lottery world cup quadrilaterals geometry youtube mean 24 hour maths newcastle pi big internet math-off bubble bobble pythagoras tennis logic game show probability probability simultaneous equations manchester science festival gaussian elimination martin gardner speed zines approximation asteroids bots mathsjam estimation draughts sound plastic ratio captain scarlet game of life hexapawn matt parker datasaurus dozen reuleaux polygons numerical analysis pascal's triangle wave scattering recursion data visualisation electromagnetic field ternary determinants dinosaurs sorting logo royal baby finite group football logs computational complexity boundary element methods programming finite element method mathsteroids raspberry pi crochet realhats data live stream map projections countdown christmas gerry anderson advent calendar noughts and crosses reddit books wool geogebra coins stickers frobel standard deviation interpolation video games graph theory chebyshev nine men's morris dataset mathslogicbot weak imposition christmas card numbers preconditioning flexagons inline code latex gather town people maths chalkdust magazine rhombicuboctahedron palindromes tmip errors london underground final fantasy convergence harriss spiral ucl polynomials anscombe's quartet pizza cutting pi approximation day trigonometry rugby signorini conditions matrices regular expressions pac-man light dragon curves manchester platonic solids triangles hats runge's phenomenon london go graphs javascript guest posts databet misleading statistics sobolev spaces edinburgh fonts folding paper fractals weather station python correlation puzzles curvature a gamut of games talking maths in public arithmetic dates

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024