mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Logical contradictions

 2016-10-08 
During my Electromagnetic Field talk this year, I spoke about @mathslogicbot (now reloated to @logicbot@mathstodon.xyz and @logicbot.bsky.social), my Twitter bot that is working its way through the tautologies in propositional calculus. My talk included my conjecture that the number of tautologies of length \(n\) is an increasing sequence (except when \(n=8\)). After my talk, Henry Segerman suggested that I also look at the number of contradictions of length \(n\) to look for insights.
A contradiction is the opposite of a tautology: it is a formula that is False for every assignment of truth values to the variables. For example, here are a few contradictions:
$$\neg(a\leftrightarrow a)$$ $$\neg(a\rightarrow a)$$ $$(\neg a\wedge a)$$ $$(\neg a\leftrightarrow a)$$
The first eleven terms of the sequence whose \(n\)th term is the number of contradictions of length \(n\) are:
$$0, 0, 0, 0, 0, 6, 2, 20, 6, 127, 154$$
This sequence is A277275 on OEIS. A list of contractions can be found here.
For the same reasons as the sequence of tautologies, I would expect this sequence to be increasing. Surprisingly, it is not increasing for small values of \(n\), but I again conjecture that it is increasing after a certain point.

Properties of the sequences

There are some properties of the two sequences that we can show. Let \(a(n)\) be the number of tautolgies of length \(n\) and let \(b(n)\) be the number of contradictions of length \(n\).
First, the number of tautologies and contradictions, \(a(n)+b(n)\), (A277276) is an increasing sequence. This is due to the facts that \(a(n+1)\geq b(n)\) and \(b(n+1)\geq a(n)\), as every tautology of length \(n\) becomes a contraction of length \(n+1\) by appending a \(\neg\) to be start and vice versa.
This implies that for each \(n\), at most one of \(a\) and \(b\) can be decreasing at \(n\), as if both were decreasing, then \(a+b\) would be decreasing. Sadly, this doesn't seem to give us a way to prove the conjectures, but it is a small amount of progress towards them.
Edit: Added Mastodon and Bluesky links
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "b" then "i" then "s" then "e" then "c" then "t" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

chebyshev countdown palindromes arithmetic bots pascal's triangle pac-man logic stickers hats guest posts map projections mathslogicbot friendly squares dates tmip crochet finite group graphs binary golden ratio world cup news european cup go raspberry pi final fantasy sobolev spaces interpolation geometry phd radio 4 london underground data visualisation stirling numbers weather station correlation computational complexity christmas card coins london plastic ratio tennis harriss spiral draughts manchester science festival games newcastle matrix multiplication national lottery game of life edinburgh hannah fry databet fence posts machine learning mathsjam craft reddit error bars sound wool estimation talking maths in public numbers polynomials menace sport rhombicuboctahedron kings pythagoras approximation recursion matrix of minors bempp nine men's morris oeis pi latex wave scattering determinants quadrilaterals speed matrices chalkdust magazine martin gardner squares flexagons live stream braiding golden spiral numerical analysis youtube bubble bobble runge's phenomenon the aperiodical standard deviation royal institution probability hexapawn ucl cambridge rugby errors turtles gather town ternary royal baby accuracy graph theory a gamut of games folding paper football hyperbolic surfaces pi approximation day preconditioning convergence php simultaneous equations chess books big internet math-off dataset sorting video games programming advent calendar noughts and crosses dinosaurs anscombe's quartet statistics realhats signorini conditions matt parker finite element method platonic solids logs python regular expressions boundary element methods mathsteroids game show probability weak imposition cross stitch inverse matrices electromagnetic field matrix of cofactors misleading statistics mean crossnumber reuleaux polygons geogebra fractals captain scarlet frobel datasaurus dozen data exponential growth 24 hour maths logo folding tube maps zines trigonometry asteroids propositional calculus bodmas gaussian elimination inline code fonts puzzles people maths curvature javascript pizza cutting christmas manchester gerry anderson triangles dragon curves light

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025