mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

TMiP 2021 puzzle hunt

 2021-09-25 
A few weeks ago, I (virtually) went to Talking Maths in Public (TMiP). TMiP is a conference for anyone involved in—or interested in getting involved in—any sort of maths outreach, enrichment, or public engagement activity. It was really good, and I highly recommend coming to TMiP 2023.
The Saturday morning at TMiP was filled with a choice of activities, including a puzzle hunt written by me. Each puzzle required the solver to first find a clue hidden in the conference's Gather-Town-powered virtual Edinburgh (built by the always excellent Katie Steckles), then solve the puzzle to reveal a clue to the final code. Once the final code was found, the solvers could enter a secret area in the Gather Town space.
The puzzles for the puzzle hunt can be found at mscroggs.co.uk/tmip. For anyone who doesn't have access to the Gather Town space, the numbers that are hidden in the space are:
The solutions to the five puzzles, and the final puzzle are below. If you want to try the puzzles for yourself, do that now before reading on.

Puzzle 1: The strange shop

A shop has a very strange pricing model. If you buy \(k\) items, then the price (in pence) is decided as follows:
You enter the shop with 1761 pence and buy 28 items.
How many pence do you leave the shop with?
Fun fact: If you try to buy 509202 items from the shop, then the shopkeeper cannot work out a price, as a prime is never reached. It is currently unknown if this is the smallest number of items that this is true for.

Show solution

Puzzle 2: The homemade notebook

You make a homemade notebook with 1288 pages: You take a stack of 1288/4 pieces of paper and fold the entire stack in half so that each piece of paper makes four pages in the notebook. You number the pages: you write the number 1 on the front cover, 2 on the inside front cover, and so on until you write 1288 on the back cover.
While you are looking for your stapler, a strong wind blows the pieces of paper all over the floor. You pick up one of the pieces of paper and add up the two numbers you wrote on one side of it.
What is the largest total you could have obtained?

Show solution

Puzzle 3: The overlapping triangles

You draw three circles that all meet at a point:
You then draw two triangles. The smaller red triangle's vertices are the centres of the circles. The larger blue triangle's vertices are at the points on each circle diametrically opposite the point where all three circles meet:
The area of the smaller red triangle is 2449.
What is the area of the larger blue triangle?

Show solution

The odd factors

You write down the integers from 94+1 to 2×94 (including 94+1 and 2×94). Under each number, you write down its largest odd factor*.
What is the sum of all the odd factors you have written?
* In this puzzle, factors include 1 and the number itself.
Hint: Doing what the puzzle says may take a long time. Try doing this will some smaller values than 94 first and see if you can spot a shortcut.

Show solution

The sandwiched quadratic

You know that \(f\) is a quadratic, and so can be written as \(f(x)=ax^2+bx+c\) for some real numbers \(a\), \(b\), and \(c\); but you've forgetten exactly which quadratic it is. You remember that for all real values of \(x\), \(f\) satisfies
$$\tfrac{1}{4}x^2+2x-8\leqslant f(x)\leqslant(x-2)^2.$$
You also remember that the minimum value of \(f\) is at \(x=0\).
What is f(102)?

Show solution

The final puzzle

The final puzzle involves using the answers to the five puzzles to find a secret four digit passcode is made up of four non-zero digits. To turn them into clues, the answers to each puzzle were scored as follows:
Each digit in an answer that is also in the passcode and in the same position in both scores two points; every digit in the answer that is also in the passcode but in a different position scores 1 point. For example, if the passcode was 3317, then:
The five clues to the final code are:

Show solution

×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Dan: Well spotted, I've edited the post
Matthew
×2   ×4   ×3   ×3   ×3     Reply
Small nitpick on problem 1 fun fact. I think you meant 509202. 509203 is already prime so the price would be 509203. The way you set up the problem (2a_n+1) only gets to (k*2^n-1) if you start with k-1, so your k needs to be one smaller than the Wikipedia's k.
Dan
×3   ×3   ×3   ×2   ×2     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "oitar" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

light probability estimation people maths sound recursion video games a gamut of games martin gardner statistics stickers dinosaurs national lottery approximation data visualisation crosswords databet graph theory weather station data rhombicuboctahedron manchester science festival finite group matrix multiplication fonts royal institution gaussian elimination royal baby preconditioning rugby mean raspberry pi mathslogicbot noughts and crosses manchester puzzles geometry simultaneous equations latex wave scattering exponential growth guest posts edinburgh golden ratio logs 24 hour maths arithmetic hats news christmas dataset interpolation machine learning chebyshev london asteroids folding paper live stream matt parker numerical analysis error bars triangles pythagoras wool newcastle folding tube maps braiding harriss spiral weak imposition go ucl electromagnetic field menace oeis big internet math-off hyperbolic surfaces bodmas finite element method gerry anderson datasaurus dozen fractals cross stitch coins sorting reuleaux polygons accuracy pascal's triangle talking maths in public quadrilaterals python dragon curves runge's phenomenon hexapawn turtles christmas card golden spiral london underground misleading statistics matrix of cofactors fence posts inverse matrices numbers sobolev spaces countdown flexagons regular expressions bubble bobble polynomials craft reddit crossnumbers convergence tennis matrices hannah fry pi approximation day boundary element methods binary gather town tmip plastic ratio radio 4 crochet correlation platonic solids draughts dates geogebra sport zines computational complexity nine men's morris mathsteroids advent calendar errors chalkdust magazine inline code captain scarlet pizza cutting books logo pac-man standard deviation logic curvature map projections propositional calculus speed football ternary phd game show probability cambridge final fantasy programming trigonometry php bots signorini conditions palindromes matrix of minors world cup crossnumber mathsjam kings youtube european cup determinants squares javascript game of life frobel realhats bempp graphs games the aperiodical friendly squares stirling numbers chess anscombe's quartet pi

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025