mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

A 20,000-to-1 baby?

 2018-03-23 
This morning, I heard about Arnie Ellis on the Today programme. Arnie is the first baby boy to be born in his family in five generations, following ten girls. According to John Humphrys, there is a 20,000-to-1 chance of this happening. Pretty quickly, I started wondering where this number came from.
After a quick Google, I found that this news story had appeared in many of today's papers, including the Sun and the Daily Mail. They all featured this 20,000-to-1 figure, which according to The Sun originally came from Ladbrokes.

What is the chance of this happening?

If someone is having a child, the probability of it being a girl is 0.5. The probability of it being a boy is also 0.5. So the probaility of having ten girls followed by a boy is
(12)10×12=12048.
If all 11 children were siblings, then this would be the chance of this happening—and it's a long way off the 20,000-to-1. But in Arnie's case, the situation is different. Luckily in the Daily Mail article, there is an outline of Arnie's family tree.
Here, you can see that the ten girls are spread over five generations. So the question becomes: given a baby, what is the probability that the child is male and his most recently born ten relatives on their mother's side are all female?
Four of the ten relatives are certainly female—Arnie's mother, grandmother, great grandmother and great great grandmother are all definitely female. This only leaves six more relatives, so the probability of a baby being in Arnie's position is
(12)6×12=1128.
This is now an awful lot lower than the 20,000-to-1 we were told. In fact, with around 700,000 births in the UK each year, we'd expect over 5,000 babies to be born in this situation every year. Maybe Arnie's not so rare after all.
This number is based on the assumption that the baby's last ten relatives are spread across five generations. But the probability will be different if the relatives are spread over a different number of generations. Calculating the probability for a baby with any arrangement of ancestors would require knowing the likelihood of each arrangement of relatives, which would require a lot of data that probably doesn't exist. But the actual anwer is probably not too far from 127-to-1.

Where did 20,000-to-1 come from?

This morning, I emailed Ladbrokes to see if they could shed any light on the 20,000-to-1 figure. They haven't got back to me yet. (Although they did accidentally CC me when sending the query on to someone who might know the answer, so I'm hopeful.) I'll update this post with an explanaation if I do hear back.
Until then, there is one possible explanation for the figure: we have looked at the probability that a baby will be in this situation, but we could instead have started at the top of the family tree and looked at the probability that Beryl's next ten decendents were girls followed by a boy. The probability of this happening will be lower, as there is a reasonable chance that Beryl could have no female children, or no children at all. Looking at the problem this way, there are more ways for the situation to not happen, so the probability of it happening is lower.
But working the actually probability out in this way would again require data about how many children are likely in each generation, and would be a complicated calculation. It seems unlikely that this is what Ladbrokes did. Let's hope they shed some light on it...
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Steve Spivey: Nothing
Matthew
                 Reply
Any response from Ladbrokes yet?
Steve Spivey
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "factor" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

weather station determinants dataset computational complexity radio 4 logs quadrilaterals misleading statistics football raspberry pi speed captain scarlet matrix of minors fractals light big internet math-off regular expressions trigonometry data visualisation harriss spiral matrix multiplication nine men's morris advent calendar stirling numbers convergence books hyperbolic surfaces inline code kings mathslogicbot people maths pascal's triangle finite group matrices simultaneous equations wave scattering game of life 24 hour maths the aperiodical preconditioning menace mathsteroids cross stitch guest posts flexagons folding tube maps latex pythagoras geogebra a gamut of games newcastle recursion world cup pizza cutting european cup london underground tmip sobolev spaces logic game show probability cambridge reddit numbers draughts ternary tennis numerical analysis geometry error bars chalkdust magazine polynomials machine learning craft binary friendly squares edinburgh logo crochet finite element method palindromes rugby dragon curves london live stream rhombicuboctahedron manchester interpolation national lottery gather town manchester science festival dinosaurs gerry anderson approximation probability estimation folding paper datasaurus dozen noughts and crosses triangles map projections crossnumber graph theory golden ratio asteroids platonic solids squares fonts phd boundary element methods puzzles sound dates php youtube christmas pac-man news crosswords royal institution hats graphs sport matrix of cofactors plastic ratio braiding martin gardner exponential growth bubble bobble games go errors golden spiral chess hexapawn signorini conditions ucl data frobel pi approximation day christmas card realhats curvature propositional calculus python reuleaux polygons correlation crossnumbers video games pi turtles programming bempp fence posts wool arithmetic gaussian elimination matt parker statistics standard deviation mean mathsjam bodmas final fantasy oeis runge's phenomenon anscombe's quartet inverse matrices javascript royal baby coins sorting weak imposition stickers hannah fry accuracy databet zines countdown bots talking maths in public electromagnetic field chebyshev

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025