mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2018-01-05 
In 1969, Sid Sackson published his magnum opus: A Gamut of Games, a collection of 38 games that can all be played with pen and paper or a pack of cards.
One of the best games I've tried so far from the book is James Dunnigan's Origins of World War I. The original version from the book gets you to start by drawing a large table to play on, and during play requires a fair bit of flicking backwards and forwards to check the rules. To make playing easier, I made this handy pdf that contains all the information you need to play the game.

The rules

Starting

Origins of World War I is a game for five players (although it can be played with 3 or 4 people; details at the end). To play you will need a printed copy of the pdf, a pen or pencil, and a 6-sided dice.
Each player picks one of the five nations along the top of the board: Britain, France, Germany, Russia, or Austria–Hungary. Once you've picked your countries, you are ready to begin.

Taking a turn

The countries take turns in the order Britain, France, Germany, Russia, or Austria–Hungary: the same order the countries are written across the top and down the side of the board. A player's turn involves two things: (1) adding "political factors"; (2) carrying out a "diplomatic attack".
First the player adds political factors (PFs). On their turn, Britain adds 14 PFs, France adds 12 PFs, Germany adds 16 PFs, Russia adds 10 PFs, and Austria–Hungary adds 10 PFs. These numbers are shown under the names of the countries on the left hand side of the board. A player can add at most 5 PFs to each country per turn, although they may add as many PFs as they like to their own country. The number of PFs a player adds to each country should be written in the boxes in the players column.
For example, Britain may choose to add 5 PFs in Italy, 2 in the Far East and 12 in Britain. This would be added to the board by writing the relevant numbers in the Italy, Far East and Britain rows of the Britain column.
After adding PFs, a player may choose to carry out a diplomatic attack. If so the player chooses one of the other four players to attack, and a country in which this attack takes place. Both players must have some PFs in the country where the attack takes place. The dice is rolled. The outcome of the attack depends on how much the attacker outnumbers the defender and the value rolled: these are shown to the right of the board. The three possible outcomes are: Attacker Eliminated (AE), which causes the attacker's PFs in this country to be reduced to 0; Exchange (EX), which causes both players' PFs in this country to be reduced by the same amount so that one player is left with 0; and Defender Eliminated (DE), wich causes the defender's PFs in this country to be reduced to 0.
For example, Britain may choose to attack Germany in Africa. If Britain and Germany have 10 and 4 PFs in Africa (respectively), then Britain outnumbers Germany 2 to 1. The dice is rolled. If a 1 is rolled, the attacker (Britain) is eliminated, leaving Britain on 0 and Germany on 4. If one of 2-5 is rolled, the players exchange, leaving Britain on 6 and Germany on 0. If a 6 is rolled, the defender (Germany) is eliminated, leaving Britain on 10 and Germany on 0.
The game ends after each play has played 10 turns. The number of turns may be kept track of by crossing out a number in the Turn Counter to the right of the board after each round of 5 turns.

Scoring

If a player has 10 or more PFs in a country, then they have Treaty Rights (TR) with that country. Each player scores point by achieving TR with other countries. TR are not symmetric: if Russia has TR with Germany, then this does not mean that Germany automatically has TR with Russia.
The number of points scored by a player for obtaining TR with other countries are printed in the boxes on the board. The numbers in brackets are only scored if the TR are exclusive: ie if no other country also has TR with that country. Additionally, points are awarded to Britain, France and Germany if the objectives in the boxes at the foot of their columns are satisfied.
For example, Britain scores 3 points if they have TR with Italy, 1 point if they have TR with Greece, 2 points if they have TR with Turkey. and 4 points if they have exclusive TR with the Far East. Britain also scores 10 points if no other nation has more than 12 points.

Alliances

During the game, players are encouraged to make deals with other players: for example, Britain may agree to not add PFs in Serbia if Russia agrees to carry diplomatic attacks against Germany in Bulgaria. Deals can of course be broken by either player later in the game.
Two players may also enter into a more formal alliance, leading to their two nations working together for the rest of the game. These alliances may not be broken. If two players are allied, then at the end of the game, their scores are added: if this total is higher than the scores of the other three players combined, then the allies win; if not, then the highest score among the other three wins.
During a game, it is possible for two different alliances to form (these must be between two different pairs of nations: a country cannot form two alliances, and three countries cannot form a three-way alliance). In this case, a pair of allies wins if their combined score is larger than the combined score of the other three players. If neither pair of allies scores this high, the unallied player wins.

Playing with 3 or 4 players

Alliances can be used to play Origins of World War I with fewer than 5 players. To play with four players, an alliance can be formed at the start of the game, with one player playing both nations in the alliance. To play with three players, the game can be started with two alliances already in place.

If you've ready this far, then you're now fully prepared to play Origins of World War I, so print the pdf, invite 4 friends over, and have a game...
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "orez" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

countdown hats advent calendar reddit data signorini conditions stirling numbers golden spiral game show probability christmas card sound hexapawn recursion newcastle dates plastic ratio binary statistics pi reuleaux polygons wool 24 hour maths edinburgh mathslogicbot trigonometry people maths curvature sobolev spaces oeis raspberry pi news mathsjam gaussian elimination error bars geogebra pythagoras harriss spiral arithmetic weak imposition light propositional calculus flexagons ucl nine men's morris big internet math-off probability captain scarlet talking maths in public latex accuracy rugby craft bubble bobble turtles squares pac-man bots the aperiodical bodmas matrix multiplication fence posts graph theory matrices tennis wave scattering pascal's triangle palindromes finite element method a gamut of games sport electromagnetic field kings european cup bempp logic misleading statistics standard deviation logo phd matrix of cofactors matt parker cross stitch gerry anderson chebyshev simultaneous equations correlation menace sorting python boundary element methods map projections approximation platonic solids triangles folding tube maps live stream errors game of life cambridge radio 4 london puzzles finite group exponential growth guest posts hyperbolic surfaces fractals friendly squares realhats rhombicuboctahedron interpolation quadrilaterals logs pizza cutting golden ratio books preconditioning world cup manchester science festival final fantasy computational complexity martin gardner dataset draughts fonts crochet convergence matrix of minors youtube royal institution speed games london underground noughts and crosses inline code numerical analysis chalkdust magazine ternary folding paper national lottery mathsteroids numbers chess determinants machine learning inverse matrices graphs javascript polynomials gather town php frobel databet christmas programming geometry manchester go asteroids braiding weather station tmip stickers estimation crossnumber pi approximation day video games zines datasaurus dozen royal baby coins mean data visualisation football hannah fry runge's phenomenon dragon curves anscombe's quartet dinosaurs regular expressions

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025