mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2019-12-27 
In tonight's Royal Institution Christmas lecture, Hannah Fry and Matt Parker demonstrated how machine learning works using MENACE.
The copy of MENACE that appeared in the lecture was build and trained by me. During the training, I logged all the moved made by MENACE and the humans playing against them, and using this data I have created some visualisations of the machine's learning.
First up, here's a visualisation of the likelihood of MENACE choosing different moves as they play games. The thickness of each arrow represented the number of beads in the box corresponding to that move, so thicker arrows represent more likely moves.
The likelihood that MENACE will play each move.
There's an awful lot of arrows in this diagram, so it's clearer if we just visualise a few boxes. This animation shows how the number of beads in the first box changes over time.
The beads in the first box.
You can see that MENACE learnt that they should always play in the centre first, an ends up with a large number of green beads and almost none of the other colours. The following animations show the number of beads changing in some other boxes.
MENACE learns that the top left is a good move.
MENACE learns that the middle right is a good move.
MENACE is very likely to draw from this position so learns that almost all the possible moves are good moves.
The numbers in these change less often, as they are not used in every game: they are only used when the game reached the positions shown on the boxes.
We can visualise MENACE's learning progress by plotting how the number of beads in the first box changes over time.
The number of beads in MENACE's first box.
Alternatively, we could plot how the number of wins, loses and draws changes over time or view this as an animated bar chart.
The number of games MENACE wins, loses and draws.
The number of games MENACE has won, lost and drawn.
If you have any ideas for other interesting ways to present this data, let me know in the comments below.
                  ×1      
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@(anonymous): Have you been refreshing the page? Every time you refresh it resets MENACE to before it has learnt anything.

It takes around 80 games for MENACE to learn against the perfect AI. So it could be you've not left it playing for long enough? (Try turning the speed up to watch MENACE get better.)
Matthew
                 Reply
I have played around menace a bit and frankly it doesnt seem to be learning i occasionally play with it and it draws but againt the perfect ai you dont see as many draws, the perfect ai wins alot more
(anonymous)
                 Reply
@Colin: You can set MENACE playing against MENACE2 (MENACE that plays second) on the interactive MENACE. MENACE2's starting numbers of beads and incentives may need some tweaking to give it a chance though; I've been meaning to look into this in more detail at some point...
Matthew
                 Reply
Idle pondering (and something you may have covered elsewhere): what's the evolution as MENACE plays against itself? (Assuming MENACE can play both sides.)
Colin
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "e" then "q" then "u" then "a" then "t" then "i" then "o" then "n" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

hexapawn arithmetic python advent calendar polynomials logo sound palindromes sobolev spaces plastic ratio chalkdust magazine zines datasaurus dozen books edinburgh geogebra go quadrilaterals martin gardner reuleaux polygons bodmas game show probability captain scarlet final fantasy rugby realhats probability 24 hour maths hats dragon curves trigonometry talking maths in public matrices weak imposition folding paper pizza cutting runge's phenomenon gaussian elimination signorini conditions boundary element methods curvature javascript draughts mathslogicbot sorting misleading statistics mathsteroids pi christmas card matt parker fractals graph theory accuracy game of life gather town mean latex menace ucl dates coins raspberry pi royal baby matrix of minors stirling numbers squares mathsjam interpolation map projections pythagoras wave scattering graphs live stream tmip cambridge guest posts sport world cup wool ternary youtube cross stitch football flexagons the aperiodical inline code crochet european cup determinants simultaneous equations triangles big internet math-off golden ratio stickers matrix multiplication reddit crossnumber standard deviation inverse matrices errors estimation national lottery a gamut of games news dataset tennis electromagnetic field turtles geometry newcastle logic computational complexity matrix of cofactors programming puzzles anscombe's quartet radio 4 finite element method numbers bempp folding tube maps phd php preconditioning golden spiral video games craft speed london people maths manchester chess weather station countdown exponential growth gerry anderson fence posts london underground binary braiding pi approximation day statistics hannah fry error bars databet approximation harriss spiral numerical analysis data oeis pac-man propositional calculus asteroids manchester science festival fonts bubble bobble data visualisation correlation nine men's morris logs hyperbolic surfaces games frobel royal institution dinosaurs machine learning finite group chebyshev convergence noughts and crosses pascal's triangle christmas light platonic solids recursion rhombicuboctahedron

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024