mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Countdown probability, pt. 2

 2014-04-11 
As well as letters games, the contestants on Countdown also take part in numbers games. Six numbers are chosen from the large numbers (25,50,75,100) and small numbers (1-10, two cards for each number) and a total between 101 and 999 (inclusive) is chosen by CECIL. The contestants then use the six numbers, with multiplication, addition, subtraction and division, to get as close to the target number as possible.
The best way to win the numbers game is to get the target exactly. This got me wondering: is there a combination of numbers which allows you to get every total between 101 and 999? And which combination of large and small numbers should be picked to give the highest chance of being able to get the target?
To work this out, I got my computer to go through every possible combination of numbers, trying every combination of operations. (I had to leave this running overnight as there are a lot of combinations!)

Getting every total

There are 61 combinations of numbers which allow every total to be obtained. These include the following (click to see how each total can be made):
By contrast, the following combination allows no totals between 101 and 999 to be reached:
The number of attainable targets for each set of numbers can be found here.

Probability of being able to reach the target

Some combinations of numbers are more likely than others. For example, 1 2 25 50 75 100 is four times as likely as 1 1 25 50 75 100, as (ignoring re-orderings) in the first combination, there are two choices for the 1 tile and 2 tile, but in the second combination there is only one choice for each 1 tile. Different ordering of tiles can be ignored as each combination with the same number of large tiles will have the same number of orderings.
By taking into account the relative probability of each combination, the following probabilities can be found:
Number of large numbersProbability of being able to reach target
00.964463439
10.983830962
20.993277819
30.985770510
40.859709475
So, in order to maximise the probability of being able to reach the target, two large numbers should be chosen.
However, as this will mean that your opponent will also be able to reach the target, a better strategy might be to pick no large numbers or four large numbers and get closer to the target than your opponent, especially if you have practised pulling off answers like this.
Edit: Numbers corrected.
Edit: The code used to calculate the numbers in this post can now be found here.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Francis Galiegue: I've pushed a version of the code to https://github.com/mscroggs/countdown-...
Matthew
                 Reply
@Francis Galiegue: Sadly, I lost the code I used when I had laptop problems. However, I can remember what it did, so I shall recreate it and put it on GitHub.
Matthew
                 Reply
If you could, I'd love to have the code you used to do this exhaustive search?

I'm a fan of the game myself (but then I'm French, so to me it's the original, "Des chiffres et des lettres"), but for the numbers game, this is pretty much irrelevant to the language and country :)
Francis Galiegue
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "bisect" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

pascal's triangle hexapawn big internet math-off approximation turtles captain scarlet world cup convergence gaussian elimination newcastle signorini conditions reuleaux polygons bempp hannah fry stirling numbers statistics numerical analysis electromagnetic field books final fantasy european cup preconditioning weak imposition exponential growth boundary element methods databet manchester triangles data visualisation finite element method royal institution ucl inline code reddit rugby ternary simultaneous equations trigonometry matrices estimation matrix of minors game show probability sobolev spaces wool radio 4 map projections mathsjam edinburgh php crochet arithmetic coins misleading statistics logo platonic solids numbers squares raspberry pi go gather town realhats geogebra bubble bobble mathsteroids machine learning pythagoras pi people maths youtube python chalkdust magazine live stream braiding menace palindromes crossnumber stickers cross stitch graph theory craft data bodmas golden spiral cambridge game of life gerry anderson weather station pac-man logic countdown asteroids datasaurus dozen rhombicuboctahedron dates finite group matt parker probability speed london london underground interpolation standard deviation programming determinants national lottery folding tube maps wave scattering golden ratio tmip hyperbolic surfaces dragon curves news inverse matrices advent calendar noughts and crosses football frobel geometry correlation tennis phd computational complexity the aperiodical fractals oeis propositional calculus sport draughts 24 hour maths sorting folding paper a gamut of games flexagons accuracy puzzles dataset christmas card matrix multiplication graphs chebyshev plastic ratio runge's phenomenon video games harriss spiral binary quadrilaterals recursion talking maths in public chess pi approximation day guest posts hats manchester science festival zines mean errors javascript fence posts dinosaurs latex curvature christmas martin gardner games logs polynomials anscombe's quartet matrix of cofactors sound error bars royal baby fonts mathslogicbot nine men's morris light pizza cutting

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024