mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Dragon curves

 2016-03-30 
Take a piece of paper. Fold it in half in the same direction many times. Now unfold it. What pattern will the folds make?
I first found this question in one of Martin Gardner's books. At first, you might that the answer will be simple, but if you look at the shapes made for a few folds, you will see otherwise:
Dragon curves of orders 1 to 6.
The curves formed are called dragon curves as they allegedly look like dragons with smoke rising from their nostrils. I'm not sure I see the resemblance:
An order 10 dragon curve.
As you increase the order of the curve (the number of times the paper was folded), the dragon curve squiggles across more of the plane, while never crossing itself. In fact, if the process was continued forever, an order infinity dragon curve would cover the whole plane, never crossing itself.
This is not the only way to cover a plane with dragon curves: the curves tessellate.
When tiled, this picture demonstrates how dragon curves tessellate. For a demonstration, try obtaining infinite lives...
Dragon curves of different orders can also fit together:

Drawing dragon curves

To generate digital dragon curves, first notice that an order \(n\) curve can be made from two order \(n-1\) curves:
This can easily be seen to be true if you consider folding paper: If you fold a strip of paper in half once, then \(n-1\) times, each half of the strip will have made an order \(n-1\) dragon curve. But the whole strip has been folded \(n\) times, so is an order \(n\) dragon curve.
Because of this, higher order dragons can be thought of as lots of lower order dragons tiled together. An the infinite dragon curve is actually equivalent to tiling the plane with a infinite number of dragons.
If you would like to create your own dragon curves, you can download the Python code I used to draw them from GitHub. If you are more of a thinker, then you might like to ponder what difference it would make if the folds used to make the dragon were in different directions.

Similar posts

Dragon curves II
Harriss and other spirals
MENACE in fiction
Building MENACEs for other games

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "sixa-x" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2019 

Jul 2019

Big Internet Math-Off stickers

Jun 2019

Proving a conjecture

Apr 2019

Harriss and other spirals

Mar 2019

realhats

Jan 2019

Christmas (2018) is over
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

national lottery statistics chebyshev golden spiral reddit christmas card bubble bobble news radio 4 golden ratio rugby games pac-man logic accuracy speed data european cup php harriss spiral craft cross stitch tennis plastic ratio royal baby game show probability folding paper braiding light the aperiodical arithmetic pythagoras noughts and crosses mathsteroids latex captain scarlet javascript wool hexapawn matt parker raspberry pi nine men's morris london underground approximation martin gardner propositional calculus mathsjam programming final fantasy trigonometry go london frobel map projections twitter people maths menace chess dataset manchester science festival graph theory electromagnetic field machine learning estimation countdown books triangles interpolation gerry anderson fractals ternary game of life christmas polynomials manchester folding tube maps python realhats pizza cutting chalkdust magazine world cup hats mathslogicbot big internet math-off puzzles flexagons football binary curvature error bars stickers misleading statistics probability oeis draughts video games asteroids weather station sorting a gamut of games geometry dates rhombicuboctahedron reuleaux polygons coins bodmas platonic solids palindromes sound sport inline code dragon curves

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2019