mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2022-03-14 
A few weekends ago, I visited Houghton-le-Spring to spend two days helping with an attempt to compute the first 100 decimal places of π by hand. You can watch Matt Parker's video about our calculation to find out about our method and how many correct decimal places we achieved.
One of my calculations
Spending two days computing an approximation of π led me to wonder how accurate calculations using various approximations of π would be.
One nice way to visualise this is to ask: what is the largest circle whose area can be correctly computed to the nearest mm² when using a chosen approximation of π? In this blog post, I'll answer this question for a range of approximations of π.

3

First up, how about the least accurate approximation we could possibly use: π = 3.
Using this approximation, the areas of circles with a radius of up to 1.88mm could be calculated correctly to the nearest mm². That's a circle about the size of an ant.

Pi Day: 3.14

Today is Pi Day, as in the date format M.DD, today's date is the first three digits of π. Using this approximation, circles with a radius of up to 17.7mm or 1.77cm can be calculated correctly to the nearest mm². That's a circle about the size of my thumb.

Pi Approximation Day: 22/7

In the date format DD/M, 22 July gives an approximation of π that is more accurate than 3.14. Using this approximation, circles with a radius of up to 19.8mm or 1.98cm can be calculated correctly to the nearest mm². That's a slightly bigger circle that's still about the size of my thumb.

Our approximation

In Houghton-le-Spring, our final computed value was 3.1415926535886829815214... The first 11 decimal places of this are correct.
Using this approximation, circles with a radius of up to \(6.71\times10^5\)mm or 671m can be calculated correctly to the nearest mm². That's a circle about the size of Regent's park.

The 100 decimal places we were aiming for

If we'd avoided any mistakes in Hougton-le-Spring, we would've obtained the first 100 decimal places of π. Using the first 100 decimal places of π, circles with a radius of up to \(7.8\times10^9\)mm or 7800km can be calculated correctly to the nearest mm². That's a circle just bigger than the Earth.

The 527 decimal places that William Shanks computed

In 1873, William Shanks computed 707 decimal places of π in Houghton-le-Spring. His first 527 decimal places were correct. Using his approximation, circles with a radius of up to approximately \(10^{263}\)mm or \(10^{244}\) light years can be calculated correctly to the nearest mm². The observable universe is only around \(10^{10}\) light years wide.
That's a quite big circle.
×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
When does "MM" give 14 for the month?
Steve Spivey
×3   ×4   ×4   ×3   ×4     Reply
I wonder if energy can be put into motion with pi, so that would be a lot of theoretical energy
Willem
×3   ×3   ×3   ×3   ×4     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "o" then "d" then "d" in the box below (case sensitive):
 2020-07-29 
A week ago, it was 22 July: Pi Approximation Day. 22/7 (22 July in DD/M format) is very close to pi, closer in fact than 14 March's approximation of 3.14 (M.DD).
During this year's Pi Approximation Day, I was wondering if there are other days that give good approximations of interesting numbers. In particular, I wondered if there is a good 2π (or τ) approximation day.
π is close to 22/7, so 2π is close to 44/7—but sadly there is no 44th July. The best approximation day for 2π is 25th April, but 25/4 (6.25) isn't really close to 2π (6.283185...) at all. The day after Pi Approximation Day, however, is a good approximation of 2π-3 (as π-3 is approximately 1/7). After noticing this, I realised that the next day would be a good approximation of 3π-6, giving a nice run of days in July that closely approximate expressions involving pi.
After I tweeted about these three, Peter Rowlett suggested that I could get a Twitter bot to do the work for me. So I made one: @HappyApproxDay. Since writing this post, Twitter broke @HappyApproxDay by changing their API, but the bot lives on on Mathstodon: @HappyApproxDay@mathstodon.xyz.
@HappyApproxDay is currently looking for days that approximate expressions involving π, τ, e, √2 and √3, and approximate the chosen expression better than any other day of the year. There are an awful lot of ways to combine these numbers, so @HappyApproxDay@mathstodon.xyz looks like it might be tooting quite a lot...
×4      ×4      ×4      ×4      ×5
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
June the 28th (6.28) isn't too bad for 2 Pi.
steve
×4   ×6   ×2   ×2   ×2     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "u" then "n" then "c" then "o" then "u" then "n" then "t" then "a" then "b" then "l" then "e" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

live stream numbers platonic solids polynomials captain scarlet edinburgh anscombe's quartet christmas geometry christmas card dataset royal institution pi approximation day bempp logo mean quadrilaterals manchester science festival the aperiodical chalkdust magazine boundary element methods computational complexity national lottery turtles noughts and crosses error bars mathsteroids interpolation football geogebra realhats bodmas braiding exponential growth game of life accuracy fonts go propositional calculus radio 4 ternary youtube curvature pi gather town martin gardner statistics palindromes frobel squares matrix of cofactors asteroids dates advent calendar binary probability games 24 hour maths rugby zines cross stitch programming phd arithmetic people maths sport books stirling numbers weather station game show probability matt parker signorini conditions errors wave scattering finite group matrices reddit gaussian elimination sound folding paper golden spiral hannah fry map projections mathsjam bubble bobble matrix of minors guest posts numerical analysis latex crochet european cup simultaneous equations runge's phenomenon weak imposition hyperbolic surfaces machine learning tmip misleading statistics hexapawn trigonometry inline code sobolev spaces chess pascal's triangle data manchester rhombicuboctahedron craft logs countdown golden ratio inverse matrices reuleaux polygons london underground databet light wool royal baby stickers logic harriss spiral javascript cambridge final fantasy gerry anderson puzzles raspberry pi dinosaurs menace talking maths in public tennis ucl news oeis speed graph theory pizza cutting python approximation convergence recursion nine men's morris determinants electromagnetic field standard deviation finite element method hats flexagons crossnumber plastic ratio estimation sorting mathslogicbot datasaurus dozen preconditioning world cup correlation pac-man big internet math-off pythagoras a gamut of games chebyshev coins fence posts matrix multiplication php london video games triangles dragon curves fractals newcastle graphs data visualisation folding tube maps draughts

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024