mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2022-03-14 
A few weekends ago, I visited Houghton-le-Spring to spend two days helping with an attempt to compute the first 100 decimal places of π by hand. You can watch Matt Parker's video about our calculation to find out about our method and how many correct decimal places we achieved.
One of my calculations
Spending two days computing an approximation of π led me to wonder how accurate calculations using various approximations of π would be.
One nice way to visualise this is to ask: what is the largest circle whose area can be correctly computed to the nearest mm² when using a chosen approximation of π? In this blog post, I'll answer this question for a range of approximations of π.

3

First up, how about the least accurate approximation we could possibly use: π = 3.
Using this approximation, the areas of circles with a radius of up to 1.88mm could be calculated correctly to the nearest mm². That's a circle about the size of an ant.

Pi Day: 3.14

Today is Pi Day, as in the date format M.DD, today's date is the first three digits of π. Using this approximation, circles with a radius of up to 17.7mm or 1.77cm can be calculated correctly to the nearest mm². That's a circle about the size of my thumb.

Pi Approximation Day: 22/7

In the date format DD/M, 22 July gives an approximation of π that is more accurate than 3.14. Using this approximation, circles with a radius of up to 19.8mm or 1.98cm can be calculated correctly to the nearest mm². That's a slightly bigger circle that's still about the size of my thumb.

Our approximation

In Houghton-le-Spring, our final computed value was 3.1415926535886829815214... The first 11 decimal places of this are correct.
Using this approximation, circles with a radius of up to \(6.71\times10^5\)mm or 671m can be calculated correctly to the nearest mm². That's a circle about the size of Regent's park.

The 100 decimal places we were aiming for

If we'd avoided any mistakes in Hougton-le-Spring, we would've obtained the first 100 decimal places of π. Using the first 100 decimal places of π, circles with a radius of up to \(7.8\times10^9\)mm or 7800km can be calculated correctly to the nearest mm². That's a circle just bigger than the Earth.

The 527 decimal places that William Shanks computed

In 1873, William Shanks computed 707 decimal places of π in Houghton-le-Spring. His first 527 decimal places were correct. Using his approximation, circles with a radius of up to approximately \(10^{263}\)mm or \(10^{244}\) light years can be calculated correctly to the nearest mm². The observable universe is only around \(10^{10}\) light years wide.
That's a quite big circle.
×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
When does "MM" give 14 for the month?
Steve Spivey
×3   ×4   ×4   ×3   ×4     Reply
I wonder if energy can be put into motion with pi, so that would be a lot of theoretical energy
Willem
×3   ×3   ×3   ×3   ×4     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "integer" in the box below (case sensitive):
 2020-07-29 
A week ago, it was 22 July: Pi Approximation Day. 22/7 (22 July in DD/M format) is very close to pi, closer in fact than 14 March's approximation of 3.14 (M.DD).
During this year's Pi Approximation Day, I was wondering if there are other days that give good approximations of interesting numbers. In particular, I wondered if there is a good 2π (or τ) approximation day.
π is close to 22/7, so 2π is close to 44/7—but sadly there is no 44th July. The best approximation day for 2π is 25th April, but 25/4 (6.25) isn't really close to 2π (6.283185...) at all. The day after Pi Approximation Day, however, is a good approximation of 2π-3 (as π-3 is approximately 1/7). After noticing this, I realised that the next day would be a good approximation of 3π-6, giving a nice run of days in July that closely approximate expressions involving pi.
After I tweeted about these three, Peter Rowlett suggested that I could get a Twitter bot to do the work for me. So I made one: @HappyApproxDay. Since writing this post, Twitter broke @HappyApproxDay by changing their API, but the bot lives on on Mathstodon: @HappyApproxDay@mathstodon.xyz.
@HappyApproxDay is currently looking for days that approximate expressions involving π, τ, e, √2 and √3, and approximate the chosen expression better than any other day of the year. There are an awful lot of ways to combine these numbers, so @HappyApproxDay@mathstodon.xyz looks like it might be tooting quite a lot...
×4      ×4      ×4      ×4      ×5
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
June the 28th (6.28) isn't too bad for 2 Pi.
steve
×4   ×6   ×2   ×2   ×2     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "nogaced" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

platonic solids folding paper determinants logo rugby quadrilaterals phd preconditioning hats polynomials triangles bubble bobble mathsjam fractals christmas noughts and crosses misleading statistics big internet math-off manchester science festival datasaurus dozen books standard deviation hyperbolic surfaces hexapawn news finite group electromagnetic field gerry anderson football graphs propositional calculus draughts realhats captain scarlet people maths guest posts stickers convergence game show probability data visualisation numbers christmas card simultaneous equations mathslogicbot gather town youtube approximation edinburgh ucl latex php matt parker raspberry pi matrix multiplication pi accuracy bempp sport crochet fonts pac-man go logic menace london reddit sorting inverse matrices chebyshev zines turtles logs national lottery correlation finite element method data crossnumber video games ternary pythagoras manchester final fantasy 24 hour maths weather station cambridge fence posts newcastle cross stitch braiding runge's phenomenon computational complexity mean golden spiral matrix of cofactors puzzles mathsteroids map projections wool dragon curves talking maths in public european cup error bars databet bodmas frobel nine men's morris live stream probability plastic ratio palindromes sound inline code games folding tube maps numerical analysis coins gaussian elimination weak imposition matrices royal institution curvature estimation rhombicuboctahedron stirling numbers harriss spiral trigonometry geogebra wave scattering machine learning asteroids binary countdown python oeis game of life matrix of minors reuleaux polygons tmip flexagons speed dinosaurs squares boundary element methods programming pascal's triangle statistics signorini conditions light javascript exponential growth dataset graph theory pizza cutting radio 4 london underground golden ratio pi approximation day hannah fry advent calendar anscombe's quartet royal baby errors craft recursion arithmetic dates interpolation geometry the aperiodical tennis martin gardner a gamut of games chalkdust magazine chess world cup sobolev spaces

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024