mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Pointless probability

 2013-12-15 
Last week, I was watching Pointless and began wondering how likely it is that a show features four new teams.
On the show, teams are given two chances to get to the final—if they are knocked out before the final round on their first appearance, then they return the following episode. In all the following, I assumed that there was an equal chance of all teams winning.
If there are four new teams on a episode, then one of these will win and not return and the other three will return. Therefore the next episode will have one new team (with probability 1). If there are three new teams on an episode: one of the new teams could win, meaning two teams return and two new teams on the next episode (with probability 3/4); or the returning team could win, meaning that there would only one new team on the next episode. These probabilities, and those for other numbers of teams are shown in the table below:
 No of new teams today
Noof new teams tomorrow
  1234
100\(\frac{1}{4}\)1
20\(\frac{1}{2}\)\(\frac{3}{4}\)0
3\(\frac{3}{4}\)\(\frac{1}{2}\)00
4\(\frac{1}{4}\)000
Call the probability of an episode having one, two, three or four new teams \(P_1\), \(P_2\), \(P_3\) and \(P_4\) respectively. After a few episodes, the following must be satisfied:
$$P_1=\frac{1}{4}P_3+P_4$$ $$P_2=\frac{1}{2}P_2+\frac{3}{4}P_3$$ $$P_3=\frac{3}{4}P_3+\frac{1}{2}P_4$$ $$P_4=\frac{1}{4}P_1$$
And the total probability must be one:
$$P_1+P_2+P_3+P_4=1$$
These simultaneous equations can be solved to find that:
$$P_1=\frac{4}{35}$$ $$P_2=\frac{18}{35}$$ $$P_3=\frac{12}{35}$$ $$P_4=\frac{1}{35}$$
So the probability that all the teams on an episode of Pointless are new is one in 35, meaning that once in every 35 episodes we should expect to see all new teams.
Edit: This blog answered the same question in a slightly different way before I got here.

Similar posts

Countdown probability, pt. 2
Countdown probability
Big Internet Math-Off stickers 2019
World Cup stickers 2018, pt. 3

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "tcesib" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

people maths arithmetic cambridge asteroids convergence final fantasy folding tube maps fractals news football golden spiral plastic ratio weak imposition machine learning european cup python logic interpolation phd bempp tmip video games royal institution geometry geogebra wave scattering cross stitch national lottery sobolev spaces london underground chess game show probability menace golden ratio sound light games electromagnetic field royal baby folding paper logs mathsteroids dataset wool statistics palindromes go trigonometry javascript curvature radio 4 bubble bobble map projections craft stickers boundary element methods determinants manchester finite element method harriss spiral world cup latex coins dates triangles sport the aperiodical sorting graph theory pizza cutting nine men's morris quadrilaterals estimation mathsjam hats simultaneous equations twitter ternary graphs propositional calculus squares inverse matrices rhombicuboctahedron matrix multiplication signorini conditions reddit polynomials christmas card chalkdust magazine bodmas rugby mathslogicbot probability hexapawn talking maths in public gerry anderson error bars martin gardner flexagons raspberry pi exponential growth tennis christmas platonic solids reuleaux polygons dragon curves realhats london ucl puzzles computational complexity binary noughts and crosses advent calendar books data visualisation numerical analysis braiding frobel php captain scarlet misleading statistics approximation pac-man matrix of cofactors inline code speed draughts pythagoras matrices hannah fry preconditioning weather station manchester science festival matrix of minors countdown oeis accuracy data a gamut of games programming gaussian elimination chebyshev matt parker game of life big internet math-off

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020