mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Archive

Show me a random blog post
 2019 
 2018 
 2017 
 2016 
 2015 
 2014 
 2013 
 2012 

Tags

draughts frobel graph theory palindromes asteroids bubble bobble chalkdust magazine mathslogicbot propositional calculus the aperiodical pythagoras ternary inline code games gerry anderson noughts and crosses estimation curvature radio 4 christmas card mathsteroids geometry harriss spiral pac-man game show probability coins bodmas arithmetic braiding craft logic raspberry pi misleading statistics probability dragon curves manchester science festival golden spiral stickers folding paper aperiodical big internet math-off python plastic ratio chess dataset polynomials speed machine learning sorting hexapawn trigonometry books electromagnetic field pizza cutting statistics chebyshev folding tube maps european cup national lottery hats interpolation flexagons data approximation news weather station london underground people maths accuracy wool christmas javascript fractals realhats light matt parker error bars php world cup captain scarlet manchester oeis video games dates royal baby reuleaux polygons a gamut of games sound london rugby platonic solids countdown programming nine men's morris menace binary game of life triangles sport golden ratio final fantasy map projections martin gardner tennis twitter rhombicuboctahedron football latex cross stitch go puzzles reddit

Archive

Show me a random blog post
▼ show ▼
 2013-12-15 

Pointless probability

Last week, I was watching Pointless and began wondering how likely it is that a show features four new teams.
On the show, teams are given two chances to get to the final—if they are knocked out before the final round on their first appearance, then they return the following episode. In all the following, I assumed that there was an equal chance of all teams winning.
If there are four new teams on a episode, then one of these will win and not return and the other three will return. Therefore the next episode will have one new team (with probability 1). If there are three new teams on an episode: one of the new teams could win, meaning two teams return and two new teams on the next episode (with probability 3/4); or the returning team could win, meaning that there would only one new team on the next episode. These probabilities, and those for other numbers of teams are shown in the table below:
 No of new teams today
Noof new teams tomorrow
  1234
100\(\frac{1}{4}\)1
20\(\frac{1}{2}\)\(\frac{3}{4}\)0
3\(\frac{3}{4}\)\(\frac{1}{2}\)00
4\(\frac{1}{4}\)000
Call the probability of an episode having one, two, three or four new teams \(P_1\), \(P_2\), \(P_3\) and \(P_4\) respectively. After a few episodes, the following must be satisfied:
$$P_1=\frac{1}{4}P_3+P_4$$ $$P_2=\frac{1}{2}P_2+\frac{3}{4}P_3$$ $$P_3=\frac{3}{4}P_3+\frac{1}{2}P_4$$ $$P_4=\frac{1}{4}P_1$$
And the total probability must be one:
$$P_1+P_2+P_3+P_4=1$$
These simultaneous equations can be solved to find that:
$$P_1=\frac{4}{35}$$ $$P_2=\frac{18}{35}$$ $$P_3=\frac{12}{35}$$ $$P_4=\frac{1}{35}$$
So the probability that all the teams on an episode of Pointless are new is one in 35, meaning that once in every 35 episodes we should expect to see all new teams.
Edit: This blog answered the same question in a slightly different way before I got here.

Similar posts

Countdown probability, pt. 2
Countdown probability
World Cup stickers 2018, pt. 3
World Cup stickers 2018, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "j" then "u" then "m" then "p" in the box below (case sensitive):
© Matthew Scroggs 2019