mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-05-15 
This is a post I wrote for The Aperiodical's Big Lock-Down Math-Off. You can vote for (or against) me here until 9am on Sunday...
Recently, I came across a surprising fact: if you take any quadrilateral and join the midpoints of its sides, then you will form a parallelogram.
The blue quadrilaterals are all parallelograms.
The first thing I thought when I read this was: "oooh, that's neat." The second thing I thought was: "why?" It's not too difficult to show why this is true; you might like to pause here and try to work out why yourself before reading on...
To show why this is true, I started by letting \(\mathbf{a}\), \(\mathbf{b}\), \(\mathbf{c}\) and \(\mathbf{d}\) be the position vectors of the vertices of our quadrilateral. The position vectors of the midpoints of the edges are the averages of the position vectors of the two ends of the edge, as shown below.
The position vectors of the corners and the midpoints of the edges.
We want to show that the orange and blue vectors below are equal (as this is true of opposite sides of a parallelogram).
We can work these vectors out: the orange vector is$$\frac{\mathbf{d}+\mathbf{a}}2-\frac{\mathbf{a}+\mathbf{b}}2=\frac{\mathbf{d}-\mathbf{b}}2,$$ and the blue vector is$$\frac{\mathbf{c}+\mathbf{d}}2-\frac{\mathbf{b}+\mathbf{c}}2=\frac{\mathbf{d}-\mathbf{b}}2.$$
In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram.

Going backwards

Even though I now saw why the surprising fact was true, my wondering was not over. I started to think about going backwards.
It's easy to see that if the outer quadrilateral is a square, then the inner quadrilateral will also be a square.
If the outer quadrilateral is a square, then the inner quadrilateral is also a square.
It's less obvious if the reverse is true: if the inner quadrilateral is a square, must the outer quadrilateral also be a square? At first, I thought this felt likely to be true, but after a bit of playing around, I found that there are many non-square quadrilaterals whose inner quadrilaterals are squares. Here are a few:
A kite, a trapezium, a delta kite, an irregular quadrilateral and a cross-quadrilateral whose innner quadrilaterals are all a square.
There are in fact infinitely many quadrilaterals whose inner quadrilateral is a square. You can explore them in this Geogebra applet by dragging around the blue point:
As you drag the point around, you may notice that you can't get the outer quadrilateral to be a non-square rectangle (or even a non-square parallelogram). I'll leave you to figure out why not...
×2      ×3      ×2      ×3      ×2
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Nice post! Just a minor nitpick, I found it weird that you say "In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram."
This is true but it's not needed (it's automatically true), you have in fact already proved that this is a parallelogram, by proving that two opposite sides have same length and are parallel (If you prove that the vectors EF and GH have the same coordinates, then EFHG is a parallelogram.)
Vivien
×2   ×2   ×2   ×2   ×2     Reply
mscroggs.co.uk is interesting as far as MATHEMATICS IS CONCERNED!
DEB JYOTI MITRA
×2   ×3   ×2   ×2   ×4     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "tneitouq" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

final fantasy london underground draughts matt parker fence posts standard deviation interpolation mathslogicbot rhombicuboctahedron polynomials plastic ratio bempp numbers mathsteroids bubble bobble pac-man craft national lottery gaussian elimination puzzles coins binary anscombe's quartet manchester raspberry pi numerical analysis 24 hour maths royal baby a gamut of games reddit matrix multiplication javascript oeis arithmetic football noughts and crosses news tmip big internet math-off mean speed preconditioning sorting wool exponential growth trigonometry palindromes the aperiodical games sobolev spaces graphs captain scarlet asteroids go logo frobel nine men's morris hats tennis inverse matrices logs regular expressions dinosaurs cross stitch python european cup accuracy newcastle error bars rugby menace php cambridge boundary element methods geogebra misleading statistics golden ratio crossnumbers radio 4 curvature bodmas recursion propositional calculus dates edinburgh friendly squares stickers books datasaurus dozen hexapawn fractals finite group computational complexity graph theory ternary crossnumber determinants crochet squares gerry anderson logic turtles electromagnetic field convergence advent calendar folding tube maps platonic solids stirling numbers realhats fonts pi approximation day triangles probability guest posts databet golden spiral royal institution hannah fry data sport braiding live stream sound martin gardner mathsjam wave scattering errors approximation hyperbolic surfaces latex countdown quadrilaterals weak imposition phd pi manchester science festival christmas card crosswords london geometry pascal's triangle reuleaux polygons talking maths in public programming pizza cutting machine learning finite element method simultaneous equations flexagons ucl kings zines christmas folding paper dragon curves matrices harriss spiral map projections chalkdust magazine statistics inline code chebyshev matrix of minors weather station correlation data visualisation runge's phenomenon signorini conditions people maths video games light gather town game of life world cup bots chess game show probability youtube dataset pythagoras matrix of cofactors estimation

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025