mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2018-05-02 
Every morning just before 7am, one of the Today Programme's presenters reads out a puzzle. Yesterday, it was this puzzle:
In a given month, the probability of a certain daily paper either running a story about inappropriate behaviour at a party conference or running one about somebody's pet being retrieved from a domestic appliance is exactly half the probability of the same paper containing a photo of a Tory MP jogging. The probability of no such photo appearing is the same as that of there being a story about inappropriate behaviour at a party conference. The probability of the paper running a story about somebody's pet being retrieved from a domestic appliance is a quarter that of its containing a photo of a Tory MP jogging. What are the probabilities the paper will (a) run the conference story, (b) run the pet story, (c) contain the jogging photo?
I'm not the only one to notice that some of Radio 4's daily puzzles are not great. I think this puzzle is a great example of a terrible puzzle. You can already see the first problem with it: it's long and words and very hard to follow on the radio. But maybe this isn't so important, as you can read it here after it's been read out.
Once you've done this, you can re-write the puzzle as follows: there are three news stories (\(A\), \(B\) and \(C\)) that the newspaper might publish in a month. We are given the following information:
$$\mathbb{P}(A\text{ or }B)=\tfrac12\mathbb{P}(C)$$ $$1-\mathbb{P}(C)=\mathbb{P}(A)$$ $$\mathbb{P}(B)=\tfrac14\mathbb{P}(C)$$
To solve this puzzle, we need use the formula \(\mathbb{P}(A\text{ or }B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\text{ and }B)\). These Venn diagrams justify this formula:
Venn diagrams showing that \(\mathbb{P}(A\text{ or }B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\text{ and }B)\).
Using the information we were given in the question, we get:
\begin{align} \tfrac12\mathbb{P}(C)&=\mathbb{P}(A\text{ or }B)\\ &=1-\mathbb{P}(C)+\tfrac14\mathbb{P}(C)-\mathbb{P}(A\text{ and }B)\\ \mathbb{P}(C)&=\tfrac45(1-\mathbb{P}(A\text{ and }B)). \end{align}
At this point we have reached the second problem with this puzzle: there's no answer unless we make some extra assumptions, and the question doesn't make it clear what we can assume. But let's give the puzzle the benefit of the doubt and try some assumptions.

Assumption 1: The events are mutually exclusive

If we assume that the events \(A\) and \(B\) are mutually exclusive—or, in other words, only one of these two articles can be published, perhaps due to a lack of space—then we can use the fact that
$$\mathbb{P}(A\text{ and }B)=0.$$
This means that \(\mathbb{P}(C)=\tfrac45\), \(\mathbb{P}(A)=\tfrac15\), and \(\mathbb{P}(B)=\tfrac15\). There's a problem with this answer, though: the three probabilities add up to more than 1.
This wouldn't be a problem, except we assumed that only one of the articles \(A\) and \(B\) could be published. The probabilities adding up to more than 1 means that either \(A\) and \(C\) are not mutually exclusive or \(A\) and \(B\) are not mutually exclusive, so \(C\) could be published alongside \(A\) or \(B\). There seems to be nothing special about the three news stories to mean that only some combinations could be published together, so at this point I figured that this assumption was wrong and moved on.
Today, however, the answer was posted, and this answer was given (without an working out). So we have a third problem with this puzzle: the answer that was given is wrong, or at the very best is based on questionable assumptions.

Assumption 2: The events are independent

If we assume that the events are independent—so one article being published doesn't affect whether or not another is published—then we may use the fact that
$$\mathbb{P}(A\text{ and }B)=\mathbb{P}(A)\mathbb{P}(B).$$
If we let \(c=\mathbb{P}(C)\), then we get:
\begin{align} \tfrac12c&=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\text{ and }B)\\ &=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A)\mathbb{P}(B)\\ &=1-c+\tfrac14c-\tfrac14(1-c)c\\ \tfrac14c^2-\tfrac32c+1&=0. \end{align}
You can use your favourite formula to solve this to find that \(c=3-\sqrt5\), and therefore \(\mathbb{P}(A)=\sqrt5-2\) and \(\mathbb{P}(B)=\tfrac34-\tfrac{\sqrt5}4\).
In this case, our assumption appears to be more reasonable—as over the course of a month the stories published by a paper probably don't have much of an effect on each other—but we have the fourth, and probably biggest problem with the puzzle: the question and answer are not interesting or surprising, and the method is a bit tedious.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Stefan: It's possible that that was intended but it's not completely clear. If that was the intention, I stick to my point that it's odd that the other story can be published alongside these two.
Matthew
                 Reply
Doesn’t the word ‘either’ in the opening phrase make A and B explicity exclusive?
Stefan
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "emirp" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

big internet math-off latex books chess signorini conditions logs numbers national lottery interpolation crossnumbers binary martin gardner guest posts kings a gamut of games arithmetic youtube stickers plastic ratio pizza cutting mathsteroids logic platonic solids palindromes sport turtles craft asteroids statistics anscombe's quartet mathsjam bempp pac-man determinants folding tube maps fractals 24 hour maths exponential growth the aperiodical video games game of life reuleaux polygons runge's phenomenon dates flexagons gather town countdown rhombicuboctahedron ternary inline code london speed cross stitch coins hats pi correlation gaussian elimination live stream manchester tennis boundary element methods hexapawn light fence posts people maths machine learning zines captain scarlet london underground dinosaurs golden spiral bodmas geogebra royal institution realhats data approximation puzzles friendly squares datasaurus dozen gerry anderson curvature dataset edinburgh pythagoras accuracy rugby cambridge python fonts geometry squares news preconditioning folding paper errors databet hyperbolic surfaces weak imposition graphs golden ratio braiding finite group electromagnetic field matrix of minors logo advent calendar estimation misleading statistics crosswords chalkdust magazine graph theory error bars convergence christmas card menace regular expressions talking maths in public tmip probability computational complexity mathslogicbot oeis hannah fry data visualisation finite element method simultaneous equations manchester science festival dragon curves javascript sobolev spaces harriss spiral propositional calculus matt parker bubble bobble football inverse matrices royal baby nine men's morris wave scattering sorting matrices programming weather station pi approximation day final fantasy map projections stirling numbers draughts matrix multiplication game show probability crossnumber mean numerical analysis games pascal's triangle recursion matrix of cofactors reddit trigonometry european cup sound wool triangles go php phd radio 4 noughts and crosses newcastle world cup raspberry pi bots chebyshev frobel quadrilaterals christmas standard deviation polynomials crochet ucl

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025