mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2019-12-27 
In tonight's Royal Institution Christmas lecture, Hannah Fry and Matt Parker demonstrated how machine learning works using MENACE.
The copy of MENACE that appeared in the lecture was build and trained by me. During the training, I logged all the moved made by MENACE and the humans playing against them, and using this data I have created some visualisations of the machine's learning.
First up, here's a visualisation of the likelihood of MENACE choosing different moves as they play games. The thickness of each arrow represented the number of beads in the box corresponding to that move, so thicker arrows represent more likely moves.
The likelihood that MENACE will play each move.
There's an awful lot of arrows in this diagram, so it's clearer if we just visualise a few boxes. This animation shows how the number of beads in the first box changes over time.
The beads in the first box.
You can see that MENACE learnt that they should always play in the centre first, an ends up with a large number of green beads and almost none of the other colours. The following animations show the number of beads changing in some other boxes.
MENACE learns that the top left is a good move.
MENACE learns that the middle right is a good move.
MENACE is very likely to draw from this position so learns that almost all the possible moves are good moves.
The numbers in these change less often, as they are not used in every game: they are only used when the game reached the positions shown on the boxes.
We can visualise MENACE's learning progress by plotting how the number of beads in the first box changes over time.
The number of beads in MENACE's first box.
Alternatively, we could plot how the number of wins, loses and draws changes over time or view this as an animated bar chart.
The number of games MENACE wins, loses and draws.
The number of games MENACE has won, lost and drawn.
If you have any ideas for other interesting ways to present this data, let me know in the comments below.
×1      ×1            ×1      
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@(anonymous): Have you been refreshing the page? Every time you refresh it resets MENACE to before it has learnt anything.

It takes around 80 games for MENACE to learn against the perfect AI. So it could be you've not left it playing for long enough? (Try turning the speed up to watch MENACE get better.)
Matthew
                 Reply
I have played around menace a bit and frankly it doesnt seem to be learning i occasionally play with it and it draws but againt the perfect ai you dont see as many draws, the perfect ai wins alot more
(anonymous)
                 Reply
@Colin: You can set MENACE playing against MENACE2 (MENACE that plays second) on the interactive MENACE. MENACE2's starting numbers of beads and incentives may need some tweaking to give it a chance though; I've been meaning to look into this in more detail at some point...
Matthew
                 Reply
Idle pondering (and something you may have covered elsewhere): what's the evolution as MENACE plays against itself? (Assuming MENACE can play both sides.)
Colin
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "ratio" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

gerry anderson programming palindromes data dates rugby correlation fonts 24 hour maths matrix of minors oeis kings raspberry pi errors finite element method squares estimation simultaneous equations golden spiral standard deviation big internet math-off manchester science festival php sport the aperiodical convergence realhats mathsjam a gamut of games python numbers mathsteroids platonic solids countdown friendly squares weather station football noughts and crosses bempp sound guest posts asteroids hannah fry chebyshev ucl light live stream misleading statistics computational complexity london underground accuracy arithmetic finite group trigonometry databet ternary golden ratio rhombicuboctahedron phd signorini conditions coins draughts radio 4 gaussian elimination folding paper edinburgh go turtles bubble bobble advent calendar matrix of cofactors error bars graphs determinants menace logs propositional calculus javascript dragon curves nine men's morris fractals regular expressions game show probability talking maths in public final fantasy mean frobel statistics latex triangles youtube newcastle stirling numbers probability manchester pi christmas card logic sobolev spaces weak imposition gather town dataset folding tube maps sorting royal baby hats bodmas plastic ratio chalkdust magazine approximation dinosaurs reddit matt parker harriss spiral crossnumber game of life crosswords puzzles inline code machine learning flexagons wave scattering boundary element methods pizza cutting polynomials european cup chess electromagnetic field news tennis preconditioning exponential growth martin gardner hyperbolic surfaces inverse matrices map projections reuleaux polygons braiding cross stitch graph theory curvature binary matrices games tmip bots pac-man london christmas people maths cambridge pascal's triangle crossnumbers interpolation royal institution data visualisation books crochet stickers hexapawn national lottery fence posts runge's phenomenon video games datasaurus dozen matrix multiplication captain scarlet quadrilaterals mathslogicbot pi approximation day recursion pythagoras world cup numerical analysis wool anscombe's quartet zines craft speed logo geogebra geometry

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025