mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2016-03-31 
Pythagoras's Theorem is perhaps the most famous theorem in maths. It is also very old, and for over 2500 years mathematicians have been explaining why it is true.
This has led to hundreds of different proofs of the theorem. Many of them were collected in the 1920s in The pythagorean proposition by Elisha Scott Loomis [1]. Let's have a look at some of them.

Using similar triangles

For our first proof, start with a right angled triangle, \(ABC\), with sides of lengths \(a\), \(b\) and \(c\).
Add a point \(D\) on the hypotenuse such that the line \(AD\) is perpendicular to \(BC\). Name the lengths as shown in the second diagram.
\(ABC\) and \(DBA\) are similar triangles, so:
$$\frac{b}{x}=\frac{c}{b}$$ $$b^2=xc$$
\(ABC\) and \(DAC\) are similar triangles, so:
$$\frac{a}{c-x}=\frac{c}{a}$$ $$a^2=c^2-cx$$
Adding the two equations gives:
$$a^2+b^2=c^2$$

Constructing a quadrilateral

This proof shows the theorem is true by using extra lines and points added to the triangle. Start with \(ABC\) as before then add a point \(D\) such that \(AD\) and \(BC\) are perpendicular and of equal length. Add points \(E\) on \(AC\) and \(F\) on \(AB\) (extended) such that \(DE\) and \(AC\) are perpendicular and \(DF\) and \(AB\) are perpendicular.
By similar triangles, it can be seen that \(DF=b\) and \(DE=a\).
As the two diagonals of \(BACD\) are perpendicular, its area is \(\tfrac12c^2\).
The quadrilateral \(BACD\).
The area of \(BACD\) is also equal to the sum of the areas of \(ABD\) and \(ACD\). The area of \(ABD\) is \(\tfrac12b^2\). The area of \(ACD\) is \(\tfrac12a^2\).
The triangles \(ABD\) and \(ACD\).
Therefore, \(\tfrac12a^2+\tfrac12b^2=\tfrac12c^2\), which implies that \(a^2+b^2=c^2\).

Using a circle

This proof again uses extra stuff: this time using a circle. Draw a circle of radius \(c\) centred at \(C\). Extend \(AC\) to \(G\) and \(H\) and extend \(AB\) to \(I\).
By the intersecting chord theorem, \(AH\times AG = AB\times AI\). Using the facts that \(AI=AB\) and \(CH\) and \(CG\) are radii, the following can be obtained from this:
$$(c-a)\times(c+a)=b\times b$$ $$c^2-a^2=b^2$$ $$a^2+b^2=c^2$$

Rearrangement proofs

A popular method of proof is dissecting the smaller squares and rearranging the pieces to make the larger square. In both the following, the pieces are coloured to show which are the same:
Alternatively, the theorem could be proved by making copies of the triangle and moving them around. This proof was presented in The pythagorean proposition simply with the caption "LOOK":

Moving proof

This next proof uses the fact that two parallelograms with the same base and height have the same area: sliding the top side horizontally does not change the area. This allows us to move the smaller squares to fill the large square:

Using vectors

For this proof, start by labelling the sides of the triangle as vectors \(\alpha\), \(\beta\) and \(\gamma\).
Clearly, \(\gamma = \alpha+\beta\). Taking the dot product of each side with itself gives:
$$\gamma\cdot\gamma = \alpha\cdot\alpha+2\alpha\cdot\beta+\beta\cdot\beta$$
\(\alpha\) and \(\beta\) are perpendicular, so \(\alpha\cdot\beta=0\); and dotting a vector with itself gives the size of the vector squared, so:
$$|\gamma|^2=|\alpha|^2+|\beta|^2$$
If you don't like any of these proofs, there are of course many, many more. Why don't you tweet me your favourite.

The pythagorean proposition by Elisha Scott Loomis. 1928. [link]
×1      ×1      ×1      ×1      ×1
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "htdiw" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

geometry mathsjam python fractals pi polynomials books games news wave scattering dataset logic probability tennis royal institution matrix of cofactors bempp datasaurus dozen trigonometry braiding matrix of minors the aperiodical noughts and crosses chess european cup wool signorini conditions pythagoras fence posts countdown plastic ratio crochet guest posts error bars folding tube maps asteroids phd captain scarlet light london underground tmip flexagons realhats runge's phenomenon triangles standard deviation hannah fry video games folding paper pac-man data visualisation chalkdust magazine quadrilaterals binary bubble bobble christmas card sound inverse matrices hats final fantasy gaussian elimination hyperbolic surfaces approximation martin gardner dragon curves 24 hour maths reuleaux polygons advent calendar rhombicuboctahedron golden spiral frobel boundary element methods recursion world cup london go geogebra curvature arithmetic sorting estimation javascript numbers live stream programming reddit numerical analysis cross stitch palindromes game show probability stirling numbers exponential growth platonic solids determinants finite element method ucl finite group electromagnetic field manchester science festival sport pascal's triangle royal baby data convergence people maths youtube crossnumber mathslogicbot gather town anscombe's quartet inline code graph theory pizza cutting hexapawn fonts ternary newcastle football computational complexity menace national lottery turtles machine learning harriss spiral accuracy matrix multiplication raspberry pi rugby logs chebyshev dates speed preconditioning coins radio 4 game of life puzzles craft stickers cambridge mathsteroids mean weak imposition correlation errors databet manchester big internet math-off a gamut of games edinburgh pi approximation day logo squares nine men's morris gerry anderson zines simultaneous equations talking maths in public php matrices oeis christmas statistics matt parker bodmas map projections draughts misleading statistics interpolation latex weather station golden ratio propositional calculus sobolev spaces graphs dinosaurs

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024