mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2016-03-31 
Pythagoras's Theorem is perhaps the most famous theorem in maths. It is also very old, and for over 2500 years mathematicians have been explaining why it is true.
This has led to hundreds of different proofs of the theorem. Many of them were collected in the 1920s in The pythagorean proposition by Elisha Scott Loomis [1]. Let's have a look at some of them.

Using similar triangles

For our first proof, start with a right angled triangle, \(ABC\), with sides of lengths \(a\), \(b\) and \(c\).
Add a point \(D\) on the hypotenuse such that the line \(AD\) is perpendicular to \(BC\). Name the lengths as shown in the second diagram.
\(ABC\) and \(DBA\) are similar triangles, so:
$$\frac{b}{x}=\frac{c}{b}$$ $$b^2=xc$$
\(ABC\) and \(DAC\) are similar triangles, so:
$$\frac{a}{c-x}=\frac{c}{a}$$ $$a^2=c^2-cx$$
Adding the two equations gives:
$$a^2+b^2=c^2$$

Constructing a quadrilateral

This proof shows the theorem is true by using extra lines and points added to the triangle. Start with \(ABC\) as before then add a point \(D\) such that \(AD\) and \(BC\) are perpendicular and of equal length. Add points \(E\) on \(AC\) and \(F\) on \(AB\) (extended) such that \(DE\) and \(AC\) are perpendicular and \(DF\) and \(AB\) are perpendicular.
By similar triangles, it can be seen that \(DF=b\) and \(DE=a\).
As the two diagonals of \(BACD\) are perpendicular, its area is \(\tfrac12c^2\).
The quadrilateral \(BACD\).
The area of \(BACD\) is also equal to the sum of the areas of \(ABD\) and \(ACD\). The area of \(ABD\) is \(\tfrac12b^2\). The area of \(ACD\) is \(\tfrac12a^2\).
The triangles \(ABD\) and \(ACD\).
Therefore, \(\tfrac12a^2+\tfrac12b^2=\tfrac12c^2\), which implies that \(a^2+b^2=c^2\).

Using a circle

This proof again uses extra stuff: this time using a circle. Draw a circle of radius \(c\) centred at \(C\). Extend \(AC\) to \(G\) and \(H\) and extend \(AB\) to \(I\).
By the intersecting chord theorem, \(AH\times AG = AB\times AI\). Using the facts that \(AI=AB\) and \(CH\) and \(CG\) are radii, the following can be obtained from this:
$$(c-a)\times(c+a)=b\times b$$ $$c^2-a^2=b^2$$ $$a^2+b^2=c^2$$

Rearrangement proofs

A popular method of proof is dissecting the smaller squares and rearranging the pieces to make the larger square. In both the following, the pieces are coloured to show which are the same:
Alternatively, the theorem could be proved by making copies of the triangle and moving them around. This proof was presented in The pythagorean proposition simply with the caption "LOOK":

Moving proof

This next proof uses the fact that two parallelograms with the same base and height have the same area: sliding the top side horizontally does not change the area. This allows us to move the smaller squares to fill the large square:

Using vectors

For this proof, start by labelling the sides of the triangle as vectors \(\alpha\), \(\beta\) and \(\gamma\).
Clearly, \(\gamma = \alpha+\beta\). Taking the dot product of each side with itself gives:
$$\gamma\cdot\gamma = \alpha\cdot\alpha+2\alpha\cdot\beta+\beta\cdot\beta$$
\(\alpha\) and \(\beta\) are perpendicular, so \(\alpha\cdot\beta=0\); and dotting a vector with itself gives the size of the vector squared, so:
$$|\gamma|^2=|\alpha|^2+|\beta|^2$$
If you don't like any of these proofs, there are of course many, many more. Why don't you tweet me your favourite.

The pythagorean proposition by Elisha Scott Loomis. 1928. [link]
×1      ×1      ×1      ×1      ×1
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "uncountable" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

pythagoras golden spiral newcastle recursion sorting wool puzzles a gamut of games video games world cup fence posts martin gardner radio 4 sobolev spaces logic matrix multiplication dragon curves crossnumber folding paper pizza cutting numbers finite element method data estimation cambridge craft binary crossnumbers stirling numbers plastic ratio game show probability manchester science festival noughts and crosses geometry runge's phenomenon dates advent calendar exponential growth nine men's morris sound finite group rugby captain scarlet flexagons pi hyperbolic surfaces preconditioning books london simultaneous equations weak imposition rhombicuboctahedron hexapawn matrix of minors accuracy approximation frobel guest posts zines misleading statistics edinburgh matrices squares convergence inline code football computational complexity pi approximation day draughts numerical analysis european cup curvature probability map projections youtube asteroids gaussian elimination manchester regular expressions quadrilaterals folding tube maps game of life polynomials phd final fantasy data visualisation php statistics arithmetic errors palindromes the aperiodical boundary element methods menace chess turtles tmip hats 24 hour maths bubble bobble dataset realhats correlation graphs error bars databet interpolation electromagnetic field fonts gerry anderson trigonometry tennis christmas card london underground friendly squares dinosaurs signorini conditions people maths triangles crosswords kings christmas national lottery matt parker bempp standard deviation programming bots weather station latex chebyshev chalkdust magazine ternary oeis pascal's triangle gather town braiding logo mathsjam crochet games wave scattering anscombe's quartet graph theory cross stitch light go raspberry pi talking maths in public hannah fry speed pac-man golden ratio mean news big internet math-off datasaurus dozen mathsteroids platonic solids fractals live stream logs countdown harriss spiral determinants bodmas propositional calculus mathslogicbot stickers matrix of cofactors inverse matrices geogebra reuleaux polygons ucl coins royal institution royal baby sport machine learning javascript reddit python

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025