mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2016-03-31 
Pythagoras's Theorem is perhaps the most famous theorem in maths. It is also very old, and for over 2500 years mathematicians have been explaining why it is true.
This has led to hundreds of different proofs of the theorem. Many of them were collected in the 1920s in The pythagorean proposition by Elisha Scott Loomis [1]. Let's have a look at some of them.

Using similar triangles

For our first proof, start with a right angled triangle, \(ABC\), with sides of lengths \(a\), \(b\) and \(c\).
Add a point \(D\) on the hypotenuse such that the line \(AD\) is perpendicular to \(BC\). Name the lengths as shown in the second diagram.
\(ABC\) and \(DBA\) are similar triangles, so:
$$\frac{b}{x}=\frac{c}{b}$$ $$b^2=xc$$
\(ABC\) and \(DAC\) are similar triangles, so:
$$\frac{a}{c-x}=\frac{c}{a}$$ $$a^2=c^2-cx$$
Adding the two equations gives:
$$a^2+b^2=c^2$$

Constructing a quadrilateral

This proof shows the theorem is true by using extra lines and points added to the triangle. Start with \(ABC\) as before then add a point \(D\) such that \(AD\) and \(BC\) are perpendicular and of equal length. Add points \(E\) on \(AC\) and \(F\) on \(AB\) (extended) such that \(DE\) and \(AC\) are perpendicular and \(DF\) and \(AB\) are perpendicular.
By similar triangles, it can be seen that \(DF=b\) and \(DE=a\).
As the two diagonals of \(BACD\) are perpendicular, its area is \(\tfrac12c^2\).
The quadrilateral \(BACD\).
The area of \(BACD\) is also equal to the sum of the areas of \(ABD\) and \(ACD\). The area of \(ABD\) is \(\tfrac12b^2\). The area of \(ACD\) is \(\tfrac12a^2\).
The triangles \(ABD\) and \(ACD\).
Therefore, \(\tfrac12a^2+\tfrac12b^2=\tfrac12c^2\), which implies that \(a^2+b^2=c^2\).

Using a circle

This proof again uses extra stuff: this time using a circle. Draw a circle of radius \(c\) centred at \(C\). Extend \(AC\) to \(G\) and \(H\) and extend \(AB\) to \(I\).
By the intersecting chord theorem, \(AH\times AG = AB\times AI\). Using the facts that \(AI=AB\) and \(CH\) and \(CG\) are radii, the following can be obtained from this:
$$(c-a)\times(c+a)=b\times b$$ $$c^2-a^2=b^2$$ $$a^2+b^2=c^2$$

Rearrangement proofs

A popular method of proof is dissecting the smaller squares and rearranging the pieces to make the larger square. In both the following, the pieces are coloured to show which are the same:
Alternatively, the theorem could be proved by making copies of the triangle and moving them around. This proof was presented in The pythagorean proposition simply with the caption "LOOK":

Moving proof

This next proof uses the fact that two parallelograms with the same base and height have the same area: sliding the top side horizontally does not change the area. This allows us to move the smaller squares to fill the large square:

Using vectors

For this proof, start by labelling the sides of the triangle as vectors \(\alpha\), \(\beta\) and \(\gamma\).
Clearly, \(\gamma = \alpha+\beta\). Taking the dot product of each side with itself gives:
$$\gamma\cdot\gamma = \alpha\cdot\alpha+2\alpha\cdot\beta+\beta\cdot\beta$$
\(\alpha\) and \(\beta\) are perpendicular, so \(\alpha\cdot\beta=0\); and dotting a vector with itself gives the size of the vector squared, so:
$$|\gamma|^2=|\alpha|^2+|\beta|^2$$
If you don't like any of these proofs, there are of course many, many more. Why don't you tweet me your favourite.

The pythagorean proposition by Elisha Scott Loomis. 1928. [link]
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "naidem" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

nine men's morris arithmetic latex bubble bobble ucl royal institution signorini conditions golden ratio hannah fry frobel quadrilaterals wave scattering a gamut of games binary books gerry anderson statistics interpolation coins guest posts datasaurus dozen pythagoras bempp braiding inverse matrices speed matrix of minors chebyshev talking maths in public games pizza cutting javascript rugby manchester platonic solids christmas card world cup game of life cross stitch data craft hats mathsteroids mathsjam inline code dataset phd estimation countdown realhats php probability crossnumber exponential growth crochet logs royal baby databet programming wool golden spiral big internet math-off bodmas radio 4 computational complexity polynomials folding paper advent calendar reuleaux polygons logo map projections pascal's triangle finite element method 24 hour maths trigonometry determinants geogebra christmas pi correlation fence posts cambridge errors puzzles sorting reddit tmip dinosaurs graphs squares martin gardner gather town anscombe's quartet noughts and crosses rhombicuboctahedron european cup error bars zines finite group matt parker runge's phenomenon weak imposition dragon curves sport sound matrix multiplication football triangles matrix of cofactors matrices chalkdust magazine fonts curvature logic light harriss spiral approximation mathslogicbot draughts plastic ratio propositional calculus stickers graph theory chess python ternary hyperbolic surfaces pi approximation day machine learning manchester science festival fractals misleading statistics folding tube maps data visualisation london underground edinburgh simultaneous equations turtles recursion mean people maths london tennis game show probability news geometry convergence national lottery boundary element methods youtube preconditioning numbers captain scarlet final fantasy weather station go standard deviation accuracy sobolev spaces oeis hexapawn video games gaussian elimination live stream asteroids menace newcastle palindromes flexagons stirling numbers electromagnetic field dates raspberry pi the aperiodical pac-man numerical analysis

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024