mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Blog

 2019-04-09 
In the latest issue of Chalkdust, I wrote an article with Edmund Harriss about the Harriss spiral that appears on the cover of the magazine. To draw a Harriss spiral, start with a rectangle whose side lengths are in the plastic ratio; that is the ratio \(1:\rho\) where \(\rho\) is the real solution of the equation \(x^3=x+1\), approximately 1.3247179.
A plastic rectangle
This rectangle can be split into a square and two rectangles similar to the original rectangle. These smaller rectangles can then be split up in the same manner.
Splitting a plastic rectangle into a square and two plastic rectangles.
Drawing two curves in each square gives the Harriss spiral.
A Harriss spiral
This spiral was inspired by the golden spiral, which is drawn in a rectangle whose side lengths are in the golden ratio of \(1:\phi\), where \(\phi\) is the positive solution of the equation \(x^2=x+1\) (approximately 1.6180339). This rectangle can be split into a square and one similar rectangle. Drawing one arc in each square gives a golden spiral.
A golden spiral

Continuing the pattern

The golden and Harriss spirals are both drawn in rectangles that can be split into a square and one or two similar rectangles.
The rectangles in which golden and Harriss spirals can be drawn.
Continuing the pattern of these arrangements suggests the following rectangle, split into a square and three similar rectangles:
Let the side of the square be 1 unit, and let each rectangle have sides in the ratio \(1:x\). We can then calculate that the lengths of the sides of each rectangle are as shown in the following diagram.
The side lengths of the large rectangle are \(\frac{1}{x^3}+\frac{1}{x^2}+\frac2x+1\) and \(\frac1{x^2}+\frac1x+1\). We want these to also be in the ratio \(1:x\). Therefore the following equation must hold:
$$\frac{1}{x^3}+\frac{1}{x^2}+\frac2x+1=x\left(\frac1{x^2}+\frac1x+1\right)$$
Rearranging this gives:
$$x^4-x^2-x-1=0$$ $$(x+1)(x^3-x^2-1)=0$$
This has one positive real solution:
$$x=\frac13\left( 1 +\sqrt[3]{\tfrac12(29-3\sqrt{93})} +\sqrt[3]{\tfrac12(29+3\sqrt{93})} \right).$$
This is equal to 1.4655712... Drawing three arcs in each square allows us to make a spiral from a rectangle with sides in this ratio:
A spiral which may or may not have a name yet.

Continuing the pattern

Adding a fourth rectangle leads to the following rectangle.
The side lengths of the largest rectangle are \(1+\frac2x+\frac3{x^2}+\frac1{x^3}+\frac1{x^4}\) and \(1+\frac2x+\frac1{x^2}+\frac1{x^3}\). Looking for the largest rectangle to also be in the ratio \(1:x\) leads to the equation:
$$1+\frac2x+\frac3{x^2}+\frac1{x^3}+\frac1{x^4} = x\left(1+\frac2x+\frac1{x^2}+\frac1{x^3}\right)$$ $$x^5+x^4-x^3-2x^2-x-1 = 0$$
This has one real solution, 1.3910491... Although for this rectangle, it's not obvious which arcs to draw to make a spiral (or maybe not possible to do it at all). But at least you get a pretty fractal:

Continuing the pattern

We could, of course, continue the pattern by repeatedly adding more rectangles. If we do this, we get the following polynomials and solutions:
Number of rectanglesPolynomialSolution
1\(x^2 - x - 1=0\)1.618033988749895
2\(x^3 - x - 1=0\)1.324717957244746
3\(x^4 - x^2 - x - 1=0\)1.465571231876768
4\(x^5 + x^4 - x^3 - 2x^2 - x - 1=0\)1.391049107172349
5\(x^6 + x^5 - 2x^3 - 3x^2 - x - 1=0\)1.426608021669601
6\(x^7 + 2x^6 - 2x^4 - 3x^3 - 4x^2 - x - 1=0\)1.4082770325090774
7\(x^8 + 2x^7 + 2x^6 - 2x^5 - 5x^4 - 4x^3 - 5x^2 - x - 1=0\)1.4172584399350432
8\(x^9 + 3x^8 + 2x^7 - 5x^5 - 9x^4 - 5x^3 - 6x^2 - x - 1=0\)1.412713760332943
9\(x^{10} + 3x^9 + 5x^8 - 5x^6 - 9x^5 - 14x^4 - 6x^3 - 7x^2 - x - 1=0\)1.414969877544769
The numbers in this table appear to be heading towards around 1.414, or \(\sqrt2\). This shouldn't come as too much of a surprise because \(1:\sqrt2\) is the ratio of the sides of A\(n\) paper (for \(n=0,1,2,...\)). A0 paper can be split up like this:
Splitting up a piece of A0 paper
This is a way of splitting up a \(1:\sqrt{2}\) rectangle into an infinite number of similar rectangles, arranged following the pattern, so it makes sense that the ratios converge to this.

Other patterns

In this post, we've only looked at splitting up rectangles into squares and similar rectangles following a particular pattern. Thinking about other arrangements leads to the following question:
Given two real numbers \(a\) and \(b\), when is it possible to split an \(a:b\) rectangle into squares and \(a:b\) rectangles?
If I get anywhere with this question, I'll post it here. Feel free to post your ideas in the comments below.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@g0mrb: CORRECTION: There seems to be no way to correct the glaring error in that comment. A senior moment enabled me to reverse the nomenclature for paper sizes. Please read the suffixes as (n+1), (n+2), etc.
(anonymous)
                 Reply
I shall remain happy in the knowledge that you have shown graphically how an A(n) sheet, which is 2 x A(n-1) rectangles, is also equal to the infinite series : A(n-1) + A(n-2) + A(n-3) + A(n-4) + ... Thank-you, and best wishes for your search for the answer to your question.
g0mrb
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "decagon" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Dec 2024

Christmas card 2024

Nov 2024

Christmas (2024) is coming!

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

martin gardner logic correlation matrix of minors accuracy programming edinburgh ternary game of life interpolation go finite element method data estimation sorting standard deviation frobel machine learning preconditioning puzzles tmip christmas people maths reuleaux polygons palindromes final fantasy nine men's morris weather station european cup london noughts and crosses gerry anderson crossnumber hats dragon curves coins books electromagnetic field games hannah fry platonic solids logs arithmetic youtube convergence big internet math-off matt parker bots golden spiral oeis game show probability news exponential growth pizza cutting national lottery matrices triangles pi manchester science festival datasaurus dozen speed the aperiodical cross stitch weak imposition mean graphs logo guest posts countdown menace gather town dinosaurs geometry zines hyperbolic surfaces stirling numbers royal baby mathslogicbot 24 hour maths reddit crochet signorini conditions video games mathsteroids php live stream pi approximation day cambridge tennis plastic ratio hexapawn pythagoras phd rhombicuboctahedron graph theory geogebra turtles curvature dates sport trigonometry dataset errors newcastle error bars rugby anscombe's quartet sound christmas card wave scattering simultaneous equations bubble bobble gaussian elimination golden ratio quadrilaterals binary advent calendar bodmas wool probability runge's phenomenon realhats chebyshev draughts numbers talking maths in public computational complexity manchester databet python asteroids data visualisation map projections inverse matrices folding tube maps chalkdust magazine misleading statistics statistics approximation boundary element methods numerical analysis stickers sobolev spaces harriss spiral a gamut of games recursion polynomials propositional calculus light fence posts mathsjam braiding london underground fonts captain scarlet raspberry pi chess royal institution fractals inline code bempp pascal's triangle determinants javascript radio 4 flexagons finite group craft folding paper latex world cup football matrix of cofactors pac-man matrix multiplication ucl squares

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024