mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2023-09-02 
This week, I've been at Talking Maths in Public (TMiP) in Newcastle. TMiP is a conference for anyone involved in—or interested in getting involved in—any sort of maths outreach, enrichment, or public engagement activity. It was really good, and I highly recommend coming to TMiP 2025.
The Saturday morning at TMiP was filled with a choice of activities, including a puzzle hunt written by me: the Tyne trial. At the start/end point of the Tyne trial, there was a locked box with a combination lock. In order to work out the combination for the lock, you needed to find some clues hidden around Newcastle and solve a few puzzles.
Every team taking part was given a copy of these instructions. Some people attended TMiP virtually, so I also made a version of the Tyne trial that included links to Google Street View and photos from which the necessary information could be obtained. You can have a go at this at mscroggs.co.uk/tyne-trial/remote. For anyone who wants to try the puzzles without searching through virtual Newcastle, the numbers that you needed to find are:
The solutions to the puzzles and the final puzzle are below. If you want to try the puzzles for yourself, do that now before reading on.

Puzzle for clue #2: Palindromes

We are going to start with a number then repeat the following process: if the number you have is a palindrome, stop; otherwise add the number to itself backwards. For example, if we start with 219, then we do: $$219\xrightarrow{+912}1131\xrightarrow{+1311}2442.$$ If you start with the number \(10b+9\) (ie 59), what palindrome do you get?
(If you start with 196, it is unknown whether you will ever get a palindrome.)

Show solution

Puzzle for clue #3: Mostly ones

There are 12 three-digit numbers whose digits are 1, 2, 3, 4, or 5 with exactly two digits that are ones. How many \(c\)-digit (ie 1838-digit) numbers are there whose digits are 1, 2, 3, 4, or 5 with exactly \(c-1\) digits (ie 1837) that are ones?

Show solution

Puzzle for clue #4: is it an integer?

The largest value of \(n\) such that \((n!-2)/(n-2)\) is an integer is 4. What is the largest value of \(n\) such that \((n!-d)/(n-d)\) (ie \((n!-1931)/(n-1931)\)) is an integer?

Show solution

Puzzle for clue #5: How many steps?

We are going to start with a number then repeat the following process: if we've reached 0, stop; otherwise subtract the smallest prime factor of the current number. For example, if we start with 9, then we do: $$9\xrightarrow{-3}6\xrightarrow{-2}4\xrightarrow{-2}2\xrightarrow{-2}0.$$ It took 4 steps to get to 0. What is the smallest starting number such that this process will take \(e\) (ie 1619) steps?

Show solution

Puzzle for clue #6: Four-digit number

I thought of a four digit number. I removed a digit to make a three digit number, then added my two numbers together. The result is \(200f+127\) (ie 9727). What was my original number?

Show solution

Puzzle for clue #7: Dice

If you roll two six-sided fair dice, the most likely total is 7. What is the most likely total if you rolled \(1470+g\) (ie 2470) dice?

Show solution

The final puzzle

The final puzzle involves using the answers to the five puzzles to find the four digit code that opens the box (and the physical locked box that was in the library on Saturday. To give hints to this code, each clue was given a "score".
The score of a number is the number of values of \(i\) such that the \(i\)th digit of the code is a factor of the \(i\)th digit of the number. For example, if the code was 1234, then the score of the number 3654 would be 3 (because 1 is a factor of 3; 2 is a factor of 6; and 4 is a factor of 4).
The seven clues to the final code are:

Show solution

×5      ×4      ×4      ×4      ×4
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "nogaxeh" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

tennis stickers fonts squares misleading statistics pizza cutting game of life datasaurus dozen video games geogebra world cup standard deviation weather station data polynomials estimation nine men's morris mathsjam crochet newcastle edinburgh national lottery map projections live stream rugby news harriss spiral hannah fry sound a gamut of games sport manchester game show probability triangles matrix multiplication braiding puzzles christmas recursion trigonometry folding tube maps propositional calculus hats runge's phenomenon chebyshev arithmetic interpolation big internet math-off speed flexagons inverse matrices binary logo machine learning phd logs stirling numbers ucl matrices python kings bots fractals errors pi approximation day signorini conditions bempp games rhombicuboctahedron people maths menace folding paper fence posts captain scarlet gaussian elimination bubble bobble palindromes data visualisation weak imposition platonic solids friendly squares boundary element methods numerical analysis royal baby golden spiral golden ratio guest posts sorting manchester science festival raspberry pi inline code convergence mathslogicbot cambridge javascript dragon curves craft finite element method advent calendar statistics pascal's triangle wool books exponential growth pythagoras error bars christmas card draughts noughts and crosses graphs reddit chess latex 24 hour maths wave scattering cross stitch tmip youtube london chalkdust magazine mean light frobel gather town numbers asteroids simultaneous equations curvature mathsteroids reuleaux polygons geometry turtles finite group determinants dataset logic preconditioning quadrilaterals graph theory matrix of minors radio 4 the aperiodical regular expressions hexapawn matt parker anscombe's quartet royal institution ternary oeis european cup talking maths in public zines dates matrix of cofactors crossnumber electromagnetic field hyperbolic surfaces dinosaurs approximation computational complexity plastic ratio gerry anderson sobolev spaces football realhats php databet london underground final fantasy probability coins go pi bodmas martin gardner accuracy countdown pac-man programming correlation

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025