mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2023-09-02 
This week, I've been at Talking Maths in Public (TMiP) in Newcastle. TMiP is a conference for anyone involved in—or interested in getting involved in—any sort of maths outreach, enrichment, or public engagement activity. It was really good, and I highly recommend coming to TMiP 2025.
The Saturday morning at TMiP was filled with a choice of activities, including a puzzle hunt written by me: the Tyne trial. At the start/end point of the Tyne trial, there was a locked box with a combination lock. In order to work out the combination for the lock, you needed to find some clues hidden around Newcastle and solve a few puzzles.
Every team taking part was given a copy of these instructions. Some people attended TMiP virtually, so I also made a version of the Tyne trial that included links to Google Street View and photos from which the necessary information could be obtained. You can have a go at this at mscroggs.co.uk/tyne-trial/remote. For anyone who wants to try the puzzles without searching through virtual Newcastle, the numbers that you needed to find are:
The solutions to the puzzles and the final puzzle are below. If you want to try the puzzles for yourself, do that now before reading on.

Puzzle for clue #2: Palindromes

We are going to start with a number then repeat the following process: if the number you have is a palindrome, stop; otherwise add the number to itself backwards. For example, if we start with 219, then we do: $$219\xrightarrow{+912}1131\xrightarrow{+1311}2442.$$ If you start with the number \(10b+9\) (ie 59), what palindrome do you get?
(If you start with 196, it is unknown whether you will ever get a palindrome.)

Show solution

Puzzle for clue #3: Mostly ones

There are 12 three-digit numbers whose digits are 1, 2, 3, 4, or 5 with exactly two digits that are ones. How many \(c\)-digit (ie 1838-digit) numbers are there whose digits are 1, 2, 3, 4, or 5 with exactly \(c-1\) digits (ie 1837) that are ones?

Show solution

Puzzle for clue #4: is it an integer?

The largest value of \(n\) such that \((n!-2)/(n-2)\) is an integer is 4. What is the largest value of \(n\) such that \((n!-d)/(n-d)\) (ie \((n!-1931)/(n-1931)\)) is an integer?

Show solution

Puzzle for clue #5: How many steps?

We are going to start with a number then repeat the following process: if we've reached 0, stop; otherwise subtract the smallest prime factor of the current number. For example, if we start with 9, then we do: $$9\xrightarrow{-3}6\xrightarrow{-2}4\xrightarrow{-2}2\xrightarrow{-2}0.$$ It took 4 steps to get to 0. What is the smallest starting number such that this process will take \(e\) (ie 1619) steps?

Show solution

Puzzle for clue #6: Four-digit number

I thought of a four digit number. I removed a digit to make a three digit number, then added my two numbers together. The result is \(200f+127\) (ie 9727). What was my original number?

Show solution

Puzzle for clue #7: Dice

If you roll two six-sided fair dice, the most likely total is 7. What is the most likely total if you rolled \(1470+g\) (ie 2470) dice?

Show solution

The final puzzle

The final puzzle involves using the answers to the five puzzles to find the four digit code that opens the box (and the physical locked box that was in the library on Saturday. To give hints to this code, each clue was given a "score".
The score of a number is the number of values of \(i\) such that the \(i\)th digit of the code is a factor of the \(i\)th digit of the number. For example, if the code was 1234, then the score of the number 3654 would be 3 (because 1 is a factor of 3; 2 is a factor of 6; and 4 is a factor of 4).
The seven clues to the final code are:

Show solution

×5      ×4      ×4      ×4      ×4
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "hparg" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

squares data visualisation runge's phenomenon matrix of minors tmip databet reddit football london platonic solids wave scattering arithmetic game show probability pi approximation day javascript map projections final fantasy chalkdust magazine sorting misleading statistics golden ratio boundary element methods gerry anderson puzzles nine men's morris weather station light quadrilaterals guest posts menace game of life martin gardner pascal's triangle games fonts latex a gamut of games christmas propositional calculus advent calendar fractals ternary ucl big internet math-off bubble bobble national lottery folding paper dates recursion correlation electromagnetic field numbers convergence geometry accuracy draughts graph theory world cup chess error bars gaussian elimination rugby sound flexagons machine learning inverse matrices stickers mean preconditioning harriss spiral hannah fry countdown probability statistics pac-man bempp palindromes hyperbolic surfaces numerical analysis wool manchester pi news errors triangles cambridge oeis royal institution cross stitch manchester science festival asteroids reuleaux polygons gather town tennis hexapawn mathslogicbot sport data european cup realhats matrix multiplication crochet mathsjam golden spiral royal baby turtles video games matt parker python noughts and crosses london underground estimation captain scarlet finite group newcastle coins frobel raspberry pi hats interpolation the aperiodical mathsteroids logic go graphs plastic ratio people maths simultaneous equations speed talking maths in public programming curvature approximation phd stirling numbers books polynomials braiding radio 4 bodmas edinburgh datasaurus dozen php fence posts 24 hour maths signorini conditions youtube dragon curves rhombicuboctahedron anscombe's quartet computational complexity finite element method folding tube maps exponential growth crossnumber christmas card logs binary geogebra weak imposition pizza cutting trigonometry standard deviation live stream matrix of cofactors dinosaurs zines dataset determinants matrices chebyshev pythagoras inline code craft logo sobolev spaces

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024