mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2021-09-25 
A few weeks ago, I (virtually) went to Talking Maths in Public (TMiP). TMiP is a conference for anyone involved in—or interested in getting involved in—any sort of maths outreach, enrichment, or public engagement activity. It was really good, and I highly recommend coming to TMiP 2023.
The Saturday morning at TMiP was filled with a choice of activities, including a puzzle hunt written by me. Each puzzle required the solver to first find a clue hidden in the conference's Gather-Town-powered virtual Edinburgh (built by the always excellent Katie Steckles), then solve the puzzle to reveal a clue to the final code. Once the final code was found, the solvers could enter a secret area in the Gather Town space.
The puzzles for the puzzle hunt can be found at mscroggs.co.uk/tmip. For anyone who doesn't have access to the Gather Town space, the numbers that are hidden in the space are:
The solutions to the five puzzles, and the final puzzle are below. If you want to try the puzzles for yourself, do that now before reading on.

Puzzle 1: The strange shop

A shop has a very strange pricing model. If you buy \(k\) items, then the price (in pence) is decided as follows:
You enter the shop with 1761 pence and buy 28 items.
How many pence do you leave the shop with?
Fun fact: If you try to buy 509202 items from the shop, then the shopkeeper cannot work out a price, as a prime is never reached. It is currently unknown if this is the smallest number of items that this is true for.

Show solution

Puzzle 2: The homemade notebook

You make a homemade notebook with 1288 pages: You take a stack of 1288/4 pieces of paper and fold the entire stack in half so that each piece of paper makes four pages in the notebook. You number the pages: you write the number 1 on the front cover, 2 on the inside front cover, and so on until you write 1288 on the back cover.
While you are looking for your stapler, a strong wind blows the pieces of paper all over the floor. You pick up one of the pieces of paper and add up the two numbers you wrote on one side of it.
What is the largest total you could have obtained?

Show solution

Puzzle 3: The overlapping triangles

You draw three circles that all meet at a point:
You then draw two triangles. The smaller red triangle's vertices are the centres of the circles. The larger blue triangle's vertices are at the points on each circle diametrically opposite the point where all three circles meet:
The area of the smaller red triangle is 2449.
What is the area of the larger blue triangle?

Show solution

The odd factors

You write down the integers from 94+1 to 2×94 (including 94+1 and 2×94). Under each number, you write down its largest odd factor*.
What is the sum of all the odd factors you have written?
* In this puzzle, factors include 1 and the number itself.
Hint: Doing what the puzzle says may take a long time. Try doing this will some smaller values than 94 first and see if you can spot a shortcut.

Show solution

The sandwiched quadratic

You know that \(f\) is a quadratic, and so can be written as \(f(x)=ax^2+bx+c\) for some real numbers \(a\), \(b\), and \(c\); but you've forgetten exactly which quadratic it is. You remember that for all real values of \(x\), \(f\) satisfies
$$\tfrac{1}{4}x^2+2x-8\leqslant f(x)\leqslant(x-2)^2.$$
You also remember that the minimum value of \(f\) is at \(x=0\).
What is f(102)?

Show solution

The final puzzle

The final puzzle involves using the answers to the five puzzles to find a secret four digit passcode is made up of four non-zero digits. To turn them into clues, the answers to each puzzle were scored as follows:
Each digit in an answer that is also in the passcode and in the same position in both scores two points; every digit in the answer that is also in the passcode but in a different position scores 1 point. For example, if the passcode was 3317, then:
The five clues to the final code are:

Show solution

×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Dan: Well spotted, I've edited the post
Matthew
×2   ×4   ×3   ×3   ×3     Reply
Small nitpick on problem 1 fun fact. I think you meant 509202. 509203 is already prime so the price would be 509203. The way you set up the problem (2a_n+1) only gets to (k*2^n-1) if you start with k-1, so your k needs to be one smaller than the Wikipedia's k.
Dan
×3   ×3   ×3   ×2   ×2     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "l" then "i" then "n" then "e" then "a" then "r" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

manchester mathslogicbot menace oeis cambridge hats graphs wave scattering data dinosaurs reddit probability programming javascript martin gardner python london underground logo dragon curves speed stickers rhombicuboctahedron fractals misleading statistics books bodmas curvature numerical analysis error bars logs hannah fry preconditioning folding paper weak imposition datasaurus dozen inverse matrices puzzles inline code logic bempp chebyshev computational complexity exponential growth craft errors hexapawn golden spiral numbers dataset christmas game show probability crochet a gamut of games finite group london machine learning pi regular expressions php coins matrix multiplication guest posts royal institution map projections sound national lottery turtles bots harriss spiral estimation plastic ratio raspberry pi latex golden ratio weather station sport friendly squares reuleaux polygons light european cup cross stitch crossnumber people maths gaussian elimination royal baby pythagoras squares binary radio 4 talking maths in public matrices edinburgh frobel pascal's triangle phd braiding bubble bobble triangles propositional calculus nine men's morris gather town fonts anscombe's quartet advent calendar boundary element methods captain scarlet 24 hour maths zines asteroids pizza cutting graph theory chess hyperbolic surfaces flexagons news newcastle christmas card accuracy matrix of minors recursion matt parker chalkdust magazine simultaneous equations finite element method standard deviation live stream trigonometry tmip palindromes sorting approximation correlation ternary stirling numbers convergence electromagnetic field gerry anderson video games quadrilaterals sobolev spaces final fantasy platonic solids youtube tennis big internet math-off realhats go pac-man mean countdown signorini conditions manchester science festival pi approximation day the aperiodical draughts polynomials fence posts dates determinants world cup geogebra data visualisation databet noughts and crosses arithmetic wool mathsjam ucl rugby interpolation games kings football game of life folding tube maps statistics runge's phenomenon matrix of cofactors mathsteroids geometry

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025