mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map Platonic solids

 2012-10-06 
This is the first post in a series of posts about tube map folding.
This week, after re-reading chapter two of Alex's Adventures in Numberland (where Alex learns to fold business cards into tetrahedrons, cubes and octahedrons) on the tube, I folded two tube maps into a tetrahedron:
Following this, I folded a cube, an octahedron and an icosahedron:
The tetrahedron, icosahedron and octahedron were all made in the same way, as seen in Numberland: folding the map in two, so that a pair of opposite corners meet, then folding the sides over to make a triangle:
In order to get an equilateral triangle at this point, paper with sides in a ratio of 1:√3 is required. Although it is not exact, the proportions of a tube map are close enough to this to get an almost equilateral triangle. Putting one of these pieces together with a mirror image piece (one where the other two corners were folded together at the start) gives a tetrahedron. The larger solids are obtained by using a larger number of maps.
The cube—also found in Numberland—can me made by placing two tube maps on each other at right angles and folding over the extra length:
Six of these pieces combine to give a cube.
Finally this morning, with a little help from the internet, I folded a dodecahedron, thus completing all the Platonic solids:
To spread the joy of folding tube maps, each time I take the tube, I am going to fold a tetrahedron from two maps and leave it on the maps when I leave the tube. I started this yesterday, leaving a tetrahedron on the maps at South Harrow. In the evening, it was still there:
Do you think it will still be there on Monday morning? How often do you think I will return to find a tetrahedron still there? I will be keeping a tetrahedron diary so we can find out the answers to these most important questions...
This is the first post in a series of posts about tube map folding.
Next post in series
Tube map Platonic solids, pt. 2

Similar posts

Tube map Platonic solids, pt. 3
Tube map Platonic solids, pt. 2
Tube map kaleidocycles
Tube map stellated rhombicuboctahedron

Comments

Comments in green were written by me. Comments in blue were not written by me.
 2017-12-21 
New test comment please ignore
Reply
Matthew
 2015-07-18 
Test comment please ignore
Reply
Matthew
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "c" then "o" then "s" then "i" then "n" then "e" in the box below (case sensitive):

Archive

Show me a random blog post
 2019 

Sep 2019

A non-converging LaTeX document
TMiP 2019 treasure punt

Jul 2019

Big Internet Math-Off stickers 2019

Jun 2019

Proving a conjecture

Apr 2019

Harriss and other spirals

Mar 2019

realhats

Jan 2019

Christmas (2018) is over
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

chebyshev geometry propositional calculus misleading statistics curvature trigonometry stickers probability reuleaux polygons pac-man martin gardner tennis graph theory captain scarlet video games logic interpolation platonic solids folding paper speed rhombicuboctahedron reddit golden spiral light talking maths in public inline code harriss spiral big internet math-off national lottery nine men's morris game show probability sorting dragon curves christmas raspberry pi chess tmip people maths a gamut of games dataset final fantasy european cup puzzles game of life hexapawn plastic ratio realhats electromagnetic field gerry anderson mathsjam twitter frobel php flexagons royal baby arithmetic bodmas asteroids weather station manchester science festival estimation london underground statistics latex golden ratio football fractals oeis palindromes rugby news machine learning dates binary coins error bars chalkdust magazine london accuracy manchester ternary wool python sound menace world cup draughts polynomials pythagoras mathsteroids map projections cambridge christmas card triangles javascript pizza cutting games programming mathslogicbot braiding books sport cross stitch go matt parker countdown hats folding tube maps craft bubble bobble noughts and crosses radio 4 data the aperiodical approximation

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2019