mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2018-09-13 
This is a post I wrote for round 2 of The Aperiodical's Big Internet Math-Off 2018. As I went out in round 1 of the Big Math-Off, you got to read about the real projective plane instead of this.
Polynomials are very nice functions: they're easy to integrate and differentiate, it's quick to calculate their value at points, and they're generally friendly to deal with. Because of this, it can often be useful to find a polynomial that closely approximates a more complicated function.
Imagine a function defined for \(x\) between -1 and 1. Pick \(n-1\) points that lie on the function. There is a unique degree \(n\) polynomial (a polynomial whose highest power of \(x\) is \(x^n\)) that passes through these points. This polynomial is called an interpolating polynomial, and it sounds like it ought to be a pretty good approximation of the function.
So let's try taking points on a function at equally spaced values of \(x\), and try to approximate the function:
$$f(x)=\frac1{1+25x^2}$$
Polynomial interpolations of \(\displaystyle f(x)=\frac1{1+25x^2}\) using equally spaced points
I'm sure you'll agree that these approximations are pretty terrible, and they get worse as more points are added. The high error towards 1 and -1 is called Runge's phenomenon, and was discovered in 1901 by Carl David Tolmé Runge.
All hope of finding a good polynomial approximation is not lost, however: by choosing the points more carefully, it's possible to avoid Runge's phenomenon. Chebyshev points (named after Pafnuty Chebyshev) are defined by taking the \(x\) co-ordinate of equally spaced points on a circle.
Eight Chebyshev points
The following GIF shows interpolating polynomials of the same function as before using Chebyshev points.
Nice, we've found a polynomial that closely approximates the function... But I guess you're now wondering how well the Chebyshev interpolation will approximate other functions. To find out, let's try it out on the votes over time of my first round Big Internet Math-Off match.
Scroggs vs Parker, 6-8 July 2018
The graphs below show the results of the match over time interpolated using 16 uniform points (left) and 16 Chebyshev points (right). You can see that the uniform interpolation is all over the place, but the Chebyshev interpolation is very close the the actual results.
Scroggs vs Parker, 6-8 July 2018, approximated using uniform points (left) and Chebyshev points (right)
But maybe you still want to see how good Chebyshev interpolation is for a function of your choice... To help you find out, I've wrote @RungeBot, a Twitter bot that can compare interpolations with equispaced and Chebyshev points. Since first publishing this post, Twitter's API changes broke @RungeBot, but it lives on on Mathstodon: @RungeBot@mathstodon.xyz. Just tweet it a function, and it'll show you how bad Runge's phenomenon is for that function, and how much better Chebysheb points are.
For example, if you were to toot "@RungeBot@mathstodon.xyz f(x)=abs(x)", then RungeBot would reply: "Here's your function interpolated using 17 equally spaced points (blue) and 17 Chebyshev points (red). For your function, Runge's phenomenon is terrible."
A list of constants and functions that RungeBot understands can be found here.
×1      ×1      ×1      ×1      ×1
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Hi Matthew, I really like your post. Is there a benefit of using chebyshev spaced polynomial interpolation rather than OLS polynomial regression when it comes to real world data? It is clear to me, that if you have a symmetric function your approach is superior in capturing the center data point. But in my understanding in your vote-example a regression minimizing the residuals would be preferrable in minimizing the error. Or do I miss something?
Benedikt
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "tcesib" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

curvature cambridge big internet math-off geometry palindromes python weak imposition dinosaurs graphs people maths bodmas simultaneous equations hats the aperiodical christmas card mathslogicbot phd fonts games reddit dataset machine learning zines crosswords manchester error bars dates javascript london underground php crossnumber news statistics triangles noughts and crosses misleading statistics reuleaux polygons game of life ternary latex martin gardner tennis cross stitch fence posts chalkdust magazine quadrilaterals friendly squares finite group matrices data visualisation pi approximation day bempp christmas harriss spiral pythagoras matt parker crochet game show probability pac-man preconditioning folding paper london dragon curves pizza cutting youtube numbers binary go inverse matrices rhombicuboctahedron numerical analysis pi wool graph theory menace probability sound exponential growth correlation rugby hexapawn datasaurus dozen inline code platonic solids golden spiral sorting gerry anderson geogebra determinants standard deviation propositional calculus regular expressions world cup wave scattering draughts gather town ucl matrix of minors data anscombe's quartet boundary element methods logo fractals map projections estimation advent calendar golden ratio stickers errors trigonometry newcastle plastic ratio bubble bobble a gamut of games coins approximation tmip gaussian elimination kings bots accuracy computational complexity speed matrix multiplication frobel pascal's triangle 24 hour maths realhats squares sport finite element method asteroids folding tube maps interpolation logs guest posts countdown hannah fry hyperbolic surfaces weather station electromagnetic field logic final fantasy convergence captain scarlet royal institution mean radio 4 databet talking maths in public braiding programming mathsjam european cup chess chebyshev sobolev spaces nine men's morris video games arithmetic live stream books edinburgh light polynomials oeis recursion runge's phenomenon mathsteroids stirling numbers national lottery football manchester science festival turtles royal baby craft crossnumbers raspberry pi flexagons signorini conditions matrix of cofactors puzzles

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025