mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-05-15 
This is a post I wrote for The Aperiodical's Big Lock-Down Math-Off. You can vote for (or against) me here until 9am on Sunday...
Recently, I came across a surprising fact: if you take any quadrilateral and join the midpoints of its sides, then you will form a parallelogram.
The blue quadrilaterals are all parallelograms.
The first thing I thought when I read this was: "oooh, that's neat." The second thing I thought was: "why?" It's not too difficult to show why this is true; you might like to pause here and try to work out why yourself before reading on...
To show why this is true, I started by letting \(\mathbf{a}\), \(\mathbf{b}\), \(\mathbf{c}\) and \(\mathbf{d}\) be the position vectors of the vertices of our quadrilateral. The position vectors of the midpoints of the edges are the averages of the position vectors of the two ends of the edge, as shown below.
The position vectors of the corners and the midpoints of the edges.
We want to show that the orange and blue vectors below are equal (as this is true of opposite sides of a parallelogram).
We can work these vectors out: the orange vector is$$\frac{\mathbf{d}+\mathbf{a}}2-\frac{\mathbf{a}+\mathbf{b}}2=\frac{\mathbf{d}-\mathbf{b}}2,$$ and the blue vector is$$\frac{\mathbf{c}+\mathbf{d}}2-\frac{\mathbf{b}+\mathbf{c}}2=\frac{\mathbf{d}-\mathbf{b}}2.$$
In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram.

Going backwards

Even though I now saw why the surprising fact was true, my wondering was not over. I started to think about going backwards.
It's easy to see that if the outer quadrilateral is a square, then the inner quadrilateral will also be a square.
If the outer quadrilateral is a square, then the inner quadrilateral is also a square.
It's less obvious if the reverse is true: if the inner quadrilateral is a square, must the outer quadrilateral also be a square? At first, I thought this felt likely to be true, but after a bit of playing around, I found that there are many non-square quadrilaterals whose inner quadrilaterals are squares. Here are a few:
A kite, a trapezium, a delta kite, an irregular quadrilateral and a cross-quadrilateral whose innner quadrilaterals are all a square.
There are in fact infinitely many quadrilaterals whose inner quadrilateral is a square. You can explore them in this Geogebra applet by dragging around the blue point:
As you drag the point around, you may notice that you can't get the outer quadrilateral to be a non-square rectangle (or even a non-square parallelogram). I'll leave you to figure out why not...
×2      ×2      ×2      ×3      ×2
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Nice post! Just a minor nitpick, I found it weird that you say "In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram."
This is true but it's not needed (it's automatically true), you have in fact already proved that this is a parallelogram, by proving that two opposite sides have same length and are parallel (If you prove that the vectors EF and GH have the same coordinates, then EFHG is a parallelogram.)
Vivien
×2   ×2   ×2   ×2   ×2     Reply
mscroggs.co.uk is interesting as far as MATHEMATICS IS CONCERNED!
DEB JYOTI MITRA
×2   ×2   ×2   ×2   ×3     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "o" then "d" then "d" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

big internet math-off python numerical analysis plastic ratio cambridge convergence royal institution dataset ternary hats gaussian elimination programming cross stitch radio 4 dinosaurs coins golden ratio mean matt parker bempp dragon curves turtles logs games london underground manchester menace newcastle realhats datasaurus dozen mathsteroids graph theory captain scarlet sport databet matrix of cofactors chebyshev map projections oeis weather station accuracy crochet manchester science festival machine learning tennis the aperiodical golden spiral squares go matrices inverse matrices sobolev spaces advent calendar gather town geogebra mathsjam data anscombe's quartet stirling numbers simultaneous equations statistics bodmas christmas martin gardner folding paper news chalkdust magazine rhombicuboctahedron draughts crossnumber curvature frobel pascal's triangle latex weak imposition wool pythagoras exponential growth 24 hour maths tmip ucl game of life geometry reddit football misleading statistics signorini conditions error bars royal baby books a gamut of games mathslogicbot finite element method fonts polynomials matrix of minors fence posts errors zines runge's phenomenon gerry anderson nine men's morris flexagons hyperbolic surfaces propositional calculus data visualisation platonic solids estimation triangles reuleaux polygons palindromes braiding live stream world cup chess dates pac-man pi approximation day phd standard deviation rugby arithmetic speed guest posts binary christmas card london graphs final fantasy php game show probability correlation trigonometry european cup sound pizza cutting stickers edinburgh approximation craft numbers light national lottery folding tube maps probability pi inline code bubble bobble fractals countdown interpolation preconditioning hexapawn boundary element methods determinants matrix multiplication logo logic noughts and crosses quadrilaterals sorting javascript electromagnetic field harriss spiral youtube people maths wave scattering recursion computational complexity asteroids talking maths in public video games finite group raspberry pi puzzles hannah fry

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024