mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Blog

A surprising fact about quadrilaterals

 2020-05-15 
This is a post I wrote for The Aperiodical's Big Lock-Down Math-Off. You can vote for (or against) me here until 9am on Sunday...
Recently, I came across a surprising fact: if you take any quadrilateral and join the midpoints of its sides, then you will form a parallelogram.
The blue quadrilaterals are all parallelograms.
The first thing I thought when I read this was: "oooh, that's neat." The second thing I thought was: "why?" It's not too difficult to show why this is true; you might like to pause here and try to work out why yourself before reading on...
To show why this is true, I started by letting \(\mathbf{a}\), \(\mathbf{b}\), \(\mathbf{c}\) and \(\mathbf{d}\) be the position vectors of the vertices of our quadrilateral. The position vectors of the midpoints of the edges are the averages of the position vectors of the two ends of the edge, as shown below.
The position vectors of the corners and the midpoints of the edges.
We want to show that the orange and blue vectors below are equal (as this is true of opposite sides of a parallelogram).
We can work these vectors out: the orange vector is$$\frac{\mathbf{d}+\mathbf{a}}2-\frac{\mathbf{a}+\mathbf{b}}2=\frac{\mathbf{d}-\mathbf{b}}2,$$ and the blue vector is$$\frac{\mathbf{c}+\mathbf{d}}2-\frac{\mathbf{b}+\mathbf{c}}2=\frac{\mathbf{d}-\mathbf{b}}2.$$
In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram.

Going backwards

Even though I now saw why the surprising fact was true, my wondering was not over. I started to think about going backwards.
It's easy to see that if the outer quadrilateral is a square, then the inner quadrilateral will also be a square.
If the outer quadrilateral is a square, then the inner quadrilateral is also a square.
It's less obvious if the reverse is true: if the inner quadrilateral is a square, must the outer quadrilateral also be a square? At first, I thought this felt likely to be true, but after a bit of playing around, I found that there are many non-square quadrilaterals whose inner quadrilaterals are squares. Here are a few:
A kite, a trapezium, a delta kite, an irregular quadrilateral and a cross-quadrilateral whose innner quadrilaterals are all a square.
There are in fact infinitely many quadrilaterals whose inner quadrilateral is a square. You can explore them in this Geogebra applet by dragging around the blue point:
As you drag the point around, you may notice that you can't get the outer quadrilateral to be a non-square rectangle (or even a non-square parallelogram). I'll leave you to figure out why not...
×2      ×2      ×2      ×3      ×2
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Nice post! Just a minor nitpick, I found it weird that you say "In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram."
This is true but it's not needed (it's automatically true), you have in fact already proved that this is a parallelogram, by proving that two opposite sides have same length and are parallel (If you prove that the vectors EF and GH have the same coordinates, then EFHG is a parallelogram.)
Vivien
×2   ×2   ×2   ×2   ×2     Reply
mscroggs.co.uk is interesting as far as MATHEMATICS IS CONCERNED!
DEB JYOTI MITRA
×2   ×2   ×2   ×2   ×3     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "s" then "e" then "g" then "m" then "e" then "n" then "t" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Dec 2024

Christmas card 2024

Nov 2024

Christmas (2024) is coming!

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

london underground hannah fry stirling numbers raspberry pi matrix multiplication game of life anscombe's quartet frobel programming hyperbolic surfaces mathsteroids noughts and crosses asteroids geometry a gamut of games dataset matt parker dates big internet math-off world cup royal baby golden ratio light estimation bubble bobble talking maths in public football misleading statistics polynomials fonts martin gardner harriss spiral dragon curves mathsjam stickers data visualisation curvature numbers video games zines fractals crochet statistics sound craft sport quadrilaterals trigonometry graphs hexapawn go finite group probability countdown inverse matrices pizza cutting python braiding palindromes royal institution logs sobolev spaces finite element method the aperiodical rhombicuboctahedron pythagoras graph theory games propositional calculus manchester science festival convergence christmas game show probability datasaurus dozen accuracy javascript dinosaurs logic flexagons golden spiral preconditioning rugby reuleaux polygons electromagnetic field boundary element methods european cup machine learning numerical analysis php geogebra squares inline code weak imposition gaussian elimination correlation advent calendar reddit exponential growth mean error bars pi national lottery matrix of cofactors wave scattering live stream mathslogicbot weather station christmas card radio 4 chebyshev interpolation nine men's morris chess computational complexity books london 24 hour maths simultaneous equations triangles ucl edinburgh crossnumber coins arithmetic approximation puzzles youtube databet captain scarlet sorting people maths logo bodmas recursion folding paper gerry anderson tennis draughts phd turtles manchester cross stitch cambridge wool pi approximation day guest posts data newcastle latex oeis standard deviation runge's phenomenon bempp matrix of minors determinants tmip map projections plastic ratio ternary menace fence posts pac-man hats gather town news binary final fantasy pascal's triangle matrices bots speed chalkdust magazine signorini conditions folding tube maps errors realhats platonic solids

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024