mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Braiding, pt. 1: The question

 2016-06-29 
Since Electromagnetic Field 2014, I have been slowly making progress on a recreational math problem about braiding. In this blog post, I will show you the type of braid I am interested in and present the problem.

Making an (8,3) braid

To make what I will later refer to as an (8,3) braid, you will need:
First, cut an octagon from the cardboard. The easiest way to do this is to start with a rectangle, then cut its corners off.
Next, use the pencil to punch a hole in the middle of your octagon and cut a small slit in each face of the octagon.
Now, tie the ends of your wool together, and put them through the hole. pull each strand of wool into one of the slits.
Now you are ready to make a braid. Starting from the empty slit, count around to the third strand of will. Pull this out of its slit then into the empty slit. Then repeat this starting at the newly empty slit each time. After a short time, a braid should form through the hole in the cardboard.

The problem

I call the braid you have just made the (8,3) braid, as there are 8 slits and you move the 3rd strand each time. After I first made on of these braid, I began to wonder what was special about 8 and 3 to make this braid work, and for what other numbers \(a\) and \(b\) the (\(a\),\(b\)) would work.
In my next blog post, I will give two conditions on \(a\) and \(b\) that cause the braid to fail. Before you read that, I recommend having a go at the problem yourself. To help you on your way, I am compiling a list of braids that are known to work or fail at mscroggs.co.uk/braiding. Good luck!

Similar posts

Electromagnetic Field talk
Braiding, pt. 2
Christmas cross stitch
Logical contradictions

Comments

Comments in green were written by me. Comments in blue were not written by me.
@no: yes, although rectangles work surprisingly well
Matthew
                 Reply
Would square cardboard work better than a rectangle
no
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "q" then "u" then "o" then "t" then "i" then "e" then "n" then "t" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

matrix of cofactors inverse matrices trigonometry graph theory royal baby geometry gaussian elimination captain scarlet football pizza cutting logic world cup speed harriss spiral computational complexity the aperiodical draughts nine men's morris news plastic ratio curvature folding tube maps exponential growth twitter accuracy stickers sobolev spaces preconditioning squares cambridge a gamut of games christmas card tennis realhats hats folding paper weather station ucl data asteroids mathslogicbot statistics binary advent calendar error bars dates chebyshev latex sorting people maths boundary element methods games go matrix multiplication craft simultaneous equations estimation radio 4 golden spiral wave scattering reuleaux polygons hannah fry wool phd logs christmas chalkdust magazine rhombicuboctahedron machine learning arithmetic dataset flexagons chess manchester science festival coins graphs european cup matrices raspberry pi tmip determinants manchester sport geogebra numerical analysis royal institution electromagnetic field game of life platonic solids javascript reddit mathsjam signorini conditions finite element method probability london dragon curves matrix of minors palindromes video games pythagoras matt parker polynomials talking maths in public braiding rugby menace golden ratio books interpolation convergence misleading statistics php frobel hexapawn noughts and crosses inline code mathsteroids programming triangles quadrilaterals pac-man martin gardner sound gerry anderson map projections national lottery countdown cross stitch propositional calculus fractals puzzles game show probability ternary approximation final fantasy bodmas bubble bobble london underground oeis data visualisation light bempp big internet math-off python weak imposition

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020