mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Braiding, pt. 1: The question

 2016-06-29 
Since Electromagnetic Field 2014, I have been slowly making progress on a recreational math problem about braiding. In this blog post, I will show you the type of braid I am interested in and present the problem.

Making an (8,3) braid

To make what I will later refer to as an (8,3) braid, you will need:
First, cut an octagon from the cardboard. The easiest way to do this is to start with a rectangle, then cut its corners off.
Next, use the pencil to punch a hole in the middle of your octagon and cut a small slit in each face of the octagon.
Now, tie the ends of your wool together, and put them through the hole. pull each strand of wool into one of the slits.
Now you are ready to make a braid. Starting from the empty slit, count around to the third strand of will. Pull this out of its slit then into the empty slit. Then repeat this starting at the newly empty slit each time. After a short time, a braid should form through the hole in the cardboard.

The problem

I call the braid you have just made the (8,3) braid, as there are 8 slits and you move the 3rd strand each time. After I first made on of these braid, I began to wonder what was special about 8 and 3 to make this braid work, and for what other numbers \(a\) and \(b\) the (\(a\),\(b\)) would work.
In my next blog post, I will give two conditions on \(a\) and \(b\) that cause the braid to fail. Before you read that, I recommend having a go at the problem yourself. To help you on your way, I am compiling a list of braids that are known to work or fail at mscroggs.co.uk/braiding. Good luck!

Similar posts

Electromagnetic Field talk
Braiding, pt. 2
Christmas cross stitch
Logical contradictions

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "decagon" in the box below (case sensitive):

Archive

Show me a random blog post
 2019 

Sep 2019

A non-converging LaTeX document
TMiP 2019 treasure punt

Jul 2019

Big Internet Math-Off stickers 2019

Jun 2019

Proving a conjecture

Apr 2019

Harriss and other spirals

Mar 2019

realhats

Jan 2019

Christmas (2018) is over
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

misleading statistics pizza cutting hats tennis speed nine men's morris manchester science festival programming chalkdust magazine rugby radio 4 pythagoras london underground plastic ratio draughts twitter propositional calculus map projections gerry anderson noughts and crosses ternary video games big internet math-off european cup harriss spiral hexapawn cambridge asteroids electromagnetic field talking maths in public folding tube maps mathslogicbot cross stitch data realhats craft chess weather station curvature graph theory flexagons dataset estimation platonic solids machine learning polynomials palindromes bodmas raspberry pi reddit probability countdown stickers books folding paper rhombicuboctahedron pac-man chebyshev sound manchester binary latex game show probability accuracy frobel final fantasy golden ratio mathsjam approximation inline code golden spiral a gamut of games mathsteroids arithmetic fractals matt parker christmas card london christmas interpolation bubble bobble light logic tmip national lottery php world cup statistics dates reuleaux polygons dragon curves puzzles wool javascript football game of life the aperiodical sorting coins menace go geometry triangles captain scarlet royal baby error bars trigonometry python braiding sport oeis martin gardner games people maths news

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2019