mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map kaleidocycles

 2016-09-06 
This is the fifth post in a series of posts about tube map folding.
After my talk at Electromagnetic Field 2014, I was sent a copy of MC Escher Kaleidocycles by Doris Schattschneider and Wallace Walker (thanks Bob!). A kaleidocycle is a bit like a 3D flexagon: it can be flexed to reveal different parts of itself.
In this blog post, I will tell you how to make a kaleidocycle from tube maps.

You will need

Making the modules

First, fold the cover of a tube map over. This will allow you to have the tube map (and not just its cover) on the faces of your shape.
With the side you want to see facing down, fold the map so that two opposite corners touch.
For this step, there is a choice of which two corners to connect: leading to a right-handed and a left-handed piece. You should make 6 of each type for your kaleidocycle.
Finally, fold the overhanding bits over to complete your module.
The folds you made when connecting opposite corners will need to fold both ways when you flex your shape, so it is worth folding them both ways a few times now before continuing.

Putting it together

Once you have made 12 modules (with 6 of each handedness), you are ready to put the kaleidocycle together.
Take two tube maps of each handedness and tuck them together in a line. Each map is tucked into one of the opposite handedness.
The four triangles across the middle form a net of a tetrahedron. Complete the tetrahedron by putting the last tab into the first triangle. Glue these together.
Take two more tube maps of the opposite handedness to those at the top of the tetrahedron. Fit them into the two triangles poking out of the top of the tetrahedron to make a second tetrahedron.
Repeat this until you have five connected tetrahedra. Finally, connect the triangles poking out of the top and the bottom to make your kaleidocycle.
Previous post in series
Tube map stellated rhombicuboctahedron
This is the fifth post in a series of posts about tube map folding.

Similar posts

Tube map Platonic solids, pt. 3
Tube map stellated rhombicuboctahedron
Electromagnetic Field talk
Tube map Platonic solids, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "u" then "n" then "c" then "o" then "u" then "n" then "t" then "a" then "b" then "l" then "e" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

raspberry pi oeis misleading statistics graph theory hats polynomials golden ratio dragon curves asteroids computational complexity world cup binary twitter braiding interpolation map projections convergence a gamut of games accuracy sobolev spaces the aperiodical python christmas harriss spiral gerry anderson bempp trigonometry london underground captain scarlet propositional calculus phd reuleaux polygons mathslogicbot sound tmip menace coins matt parker cross stitch cambridge royal institution finite element method wool triangles curvature people maths folding tube maps preconditioning london matrix multiplication chebyshev determinants national lottery logs signorini conditions countdown matrices dataset chess wave scattering folding paper football noughts and crosses final fantasy machine learning realhats data flexagons php matrix of cofactors numerical analysis arithmetic chalkdust magazine plastic ratio inverse matrices draughts javascript logic electromagnetic field light rugby nine men's morris hexapawn mathsjam frobel go estimation graphs weather station royal baby radio 4 pizza cutting gaussian elimination big internet math-off hannah fry matrix of minors boundary element methods golden spiral bubble bobble probability dates geometry platonic solids advent calendar video games fractals statistics exponential growth manchester sport programming rhombicuboctahedron latex games speed palindromes error bars manchester science festival bodmas craft pythagoras simultaneous equations data visualisation tennis european cup weak imposition mathsteroids puzzles game of life inline code game show probability news stickers ternary talking maths in public ucl books christmas card reddit approximation pac-man sorting martin gardner

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020