mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map kaleidocycles

 2016-09-06 
This is the fifth post in a series of posts about tube map folding.
After my talk at Electromagnetic Field 2014, I was sent a copy of MC Escher Kaleidocycles by Doris Schattschneider and Wallace Walker (thanks Bob!). A kaleidocycle is a bit like a 3D flexagon: it can be flexed to reveal different parts of itself.
In this blog post, I will tell you how to make a kaleidocycle from tube maps.

You will need

Making the modules

First, fold the cover of a tube map over. This will allow you to have the tube map (and not just its cover) on the faces of your shape.
With the side you want to see facing down, fold the map so that two opposite corners touch.
For this step, there is a choice of which two corners to connect: leading to a right-handed and a left-handed piece. You should make 6 of each type for your kaleidocycle.
Finally, fold the overhanding bits over to complete your module.
The folds you made when connecting opposite corners will need to fold both ways when you flex your shape, so it is worth folding them both ways a few times now before continuing.

Putting it together

Once you have made 12 modules (with 6 of each handedness), you are ready to put the kaleidocycle together.
Take two tube maps of each handedness and tuck them together in a line. Each map is tucked into one of the opposite handedness.
The four triangles across the middle form a net of a tetrahedron. Complete the tetrahedron by putting the last tab into the first triangle. Glue these together.
Take two more tube maps of the opposite handedness to those at the top of the tetrahedron. Fit them into the two triangles poking out of the top of the tetrahedron to make a second tetrahedron.
Repeat this until you have five connected tetrahedra. Finally, connect the triangles poking out of the top and the bottom to make your kaleidocycle.
Previous post in series
Tube map stellated rhombicuboctahedron
This is the fifth post in a series of posts about tube map folding.

Similar posts

Tube map Platonic solids, pt. 3
Tube map stellated rhombicuboctahedron
Electromagnetic Field talk
Tube map Platonic solids, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "naidem" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2019 

Sep 2019

A non-converging LaTeX document
TMiP 2019 treasure punt

Jul 2019

Big Internet Math-Off stickers 2019

Jun 2019

Proving a conjecture

Apr 2019

Harriss and other spirals

Mar 2019

realhats

Jan 2019

Christmas (2018) is over
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

cross stitch rugby folding tube maps pac-man probability big internet math-off inline code rhombicuboctahedron matt parker misleading statistics mathsjam golden ratio interpolation cambridge manchester science festival talking maths in public sorting chess error bars stickers python menace tmip national lottery coins folding paper wool european cup php go books the aperiodical final fantasy realhats gerry anderson platonic solids flexagons mathsteroids plastic ratio bubble bobble polynomials hexapawn golden spiral map projections dragon curves statistics bodmas tennis puzzles harriss spiral weather station logic electromagnetic field javascript graph theory programming light arithmetic fractals oeis manchester curvature london machine learning a gamut of games speed royal baby chalkdust magazine estimation triangles pythagoras captain scarlet nine men's morris radio 4 binary noughts and crosses news braiding trigonometry world cup latex football accuracy mathslogicbot frobel christmas card christmas london underground palindromes draughts reddit chebyshev asteroids people maths martin gardner geometry dataset propositional calculus sound video games approximation hats game of life countdown pizza cutting dates sport data ternary game show probability games twitter raspberry pi reuleaux polygons craft

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2019