mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

PhD thesis, chapter 5

 2020-02-16 
This is the fifth post in a series of posts about my PhD thesis.
In the fifth and final chapter of my thesis, we look at how boundary conditions can be weakly imposed on the Helmholtz equation.

Analysis

As in chapter 4, we must adapt the analysis of chapter 3 to apply to Helmholtz problems. The boundary operators for the Helmholtz equation satisfy less strong conditions than the operators for Laplace's equation (for Laplace's equation, the operators satisfy a condition called coercivity; for Helmholtz, the operators satisfy a weaker condition called Gårding's inequality), making proving results about Helmholtz problem harder.
After some work, we are able to prove an a priori error bound (with \(a=\tfrac32\) for the spaces we use):
$$\left\|u-u_h\right\|\leqslant ch^{a}\left\|u\right\|$$

Numerical results

As in the previous chapters, we use Bempp to show that computations with this method match the theory.
The error of our approximate solutions of a Dirichlet (left) and mixed Dirichlet–Neumann problems in the exterior of a sphere with meshes with different values of \(h\). The dashed lines show order \(\tfrac32\) convergence.

Wave scattering

Boundary element methods are often used to solve Helmholtz wave scattering problems. These are problems in which a sound wave is travelling though a medium (eg the air), then hits an object: you want to know what the sound wave that scatters off the object looks like.
If there are multiple objects that the wave is scattering off, the boundary element method formulation can get quite complicated. When using weak imposition, the formulation is simpler: this one advantage of this method.
The following diagram shows a sound wave scattering off a mixure of sound-hard and sound-soft spheres. Sound-hard objects reflect sound well, while sound-soft objects absorb it well.
A sound wave scattering off a mixture of sound-hard (white) and sound-soft (black) spheres.
If you are trying to design something with particular properties—for example, a barrier that absorbs sound—you may want to solve lots of wave scattering problems on an object on some objects with various values taken for their reflective properties. This type of problem is often called an inverse problem.
For this type of problem, weakly imposing boundary conditions has advantages: the discretisation of the Calderón projector can be reused for each problem, and only the terms due to the weakly imposed boundary conditions need to be recalculated. This is an advantages as the boundary condition terms are much less expensive (ie they use much less time and memory) to calculate than the Calderón term that is reused.

This concludes chapter 5, the final chapter of my thesis. Why not celebrate reaching the end by cracking open the following figure before reading the concluding blog post.
An acoustic wave scattering off a sound-hard champagne bottle and a sound-soft cork.
Previous post in series
This is the fifth post in a series of posts about my PhD thesis.
Next post in series
×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "pmuj" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

youtube game show probability rugby accuracy fonts raspberry pi a gamut of games estimation machine learning national lottery finite element method live stream games weak imposition football determinants pascal's triangle stickers mathsteroids dinosaurs trigonometry hyperbolic surfaces statistics captain scarlet pi approximation day platonic solids the aperiodical turtles golden spiral tmip polynomials regular expressions wool realhats braiding inverse matrices sobolev spaces chebyshev error bars phd hats menace palindromes bodmas go logs guest posts folding tube maps anscombe's quartet simultaneous equations curvature geometry flexagons standard deviation draughts convergence finite group noughts and crosses logo frobel correlation pac-man newcastle dataset talking maths in public crochet quadrilaterals stirling numbers latex game of life countdown golden ratio cross stitch dates crossnumber folding paper exponential growth boundary element methods harriss spiral python ucl errors plastic ratio cambridge video games matrix of minors weather station world cup sport bots fractals matrix of cofactors pizza cutting puzzles light radio 4 numbers reddit data visualisation inline code matrix multiplication javascript oeis edinburgh sorting numerical analysis gather town manchester news graph theory hexapawn gaussian elimination datasaurus dozen interpolation ternary christmas london underground advent calendar triangles london pi map projections squares big internet math-off craft wave scattering approximation asteroids mean zines chalkdust magazine christmas card people maths royal institution bempp rhombicuboctahedron bubble bobble recursion propositional calculus european cup data mathsjam nine men's morris signorini conditions hannah fry databet 24 hour maths logic books fence posts electromagnetic field gerry anderson tennis manchester science festival kings pythagoras final fantasy php graphs computational complexity reuleaux polygons speed probability royal baby dragon curves sound runge's phenomenon matrices coins arithmetic misleading statistics programming martin gardner friendly squares mathslogicbot matt parker chess geogebra binary preconditioning

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025