mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-02-16 
This is the fifth post in a series of posts about my PhD thesis.
In the fifth and final chapter of my thesis, we look at how boundary conditions can be weakly imposed on the Helmholtz equation.

Analysis

As in chapter 4, we must adapt the analysis of chapter 3 to apply to Helmholtz problems. The boundary operators for the Helmholtz equation satisfy less strong conditions than the operators for Laplace's equation (for Laplace's equation, the operators satisfy a condition called coercivity; for Helmholtz, the operators satisfy a weaker condition called Gårding's inequality), making proving results about Helmholtz problem harder.
After some work, we are able to prove an a priori error bound (with \(a=\tfrac32\) for the spaces we use):
$$\left\|u-u_h\right\|\leqslant ch^{a}\left\|u\right\|$$

Numerical results

As in the previous chapters, we use Bempp to show that computations with this method match the theory.
The error of our approximate solutions of a Dirichlet (left) and mixed Dirichlet–Neumann problems in the exterior of a sphere with meshes with different values of \(h\). The dashed lines show order \(\tfrac32\) convergence.

Wave scattering

Boundary element methods are often used to solve Helmholtz wave scattering problems. These are problems in which a sound wave is travelling though a medium (eg the air), then hits an object: you want to know what the sound wave that scatters off the object looks like.
If there are multiple objects that the wave is scattering off, the boundary element method formulation can get quite complicated. When using weak imposition, the formulation is simpler: this one advantage of this method.
The following diagram shows a sound wave scattering off a mixure of sound-hard and sound-soft spheres. Sound-hard objects reflect sound well, while sound-soft objects absorb it well.
A sound wave scattering off a mixture of sound-hard (white) and sound-soft (black) spheres.
If you are trying to design something with particular properties—for example, a barrier that absorbs sound—you may want to solve lots of wave scattering problems on an object on some objects with various values taken for their reflective properties. This type of problem is often called an inverse problem.
For this type of problem, weakly imposing boundary conditions has advantages: the discretisation of the Calderón projector can be reused for each problem, and only the terms due to the weakly imposed boundary conditions need to be recalculated. This is an advantages as the boundary condition terms are much less expensive (ie they use much less time and memory) to calculate than the Calderón term that is reused.

This concludes chapter 5, the final chapter of my thesis. Why not celebrate reaching the end by cracking open the following figure before reading the concluding blog post.
An acoustic wave scattering off a sound-hard champagne bottle and a sound-soft cork.
Previous post in series
This is the fifth post in a series of posts about my PhD thesis.
Next post in series
×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "equation" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

christmas card hats sound machine learning misleading statistics numerical analysis mean folding paper convergence fractals mathsteroids matrices wave scattering pi mathsjam logic newcastle royal institution people maths game of life weather station graph theory tmip world cup pythagoras video games speed stickers frobel exponential growth runge's phenomenon sobolev spaces pi approximation day nine men's morris crossnumber flexagons matrix multiplication friendly squares radio 4 captain scarlet sport realhats youtube logo pascal's triangle bots royal baby interpolation accuracy countdown final fantasy geogebra london underground golden ratio mathslogicbot triangles braiding errors edinburgh manchester databet dinosaurs the aperiodical propositional calculus menace stirling numbers golden spiral inline code advent calendar harriss spiral national lottery statistics finite group bodmas python reddit quadrilaterals puzzles raspberry pi numbers pac-man bubble bobble craft map projections coins light weak imposition news logs martin gardner correlation 24 hour maths geometry programming european cup zines binary dataset cross stitch computational complexity hannah fry dates standard deviation chess regular expressions crochet curvature sorting hyperbolic surfaces noughts and crosses talking maths in public anscombe's quartet go php rhombicuboctahedron matt parker gerry anderson javascript cambridge oeis probability finite element method estimation football signorini conditions turtles asteroids plastic ratio chalkdust magazine preconditioning london data visualisation tennis data books arithmetic dragon curves games fence posts error bars graphs squares electromagnetic field datasaurus dozen gather town hexapawn rugby approximation kings latex recursion palindromes matrix of minors christmas big internet math-off reuleaux polygons pizza cutting a gamut of games matrix of cofactors manchester science festival gaussian elimination draughts boundary element methods phd simultaneous equations fonts wool game show probability polynomials determinants inverse matrices chebyshev guest posts bempp live stream platonic solids folding tube maps ternary ucl trigonometry

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025