mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-02-16 
This is the fifth post in a series of posts about my PhD thesis.
In the fifth and final chapter of my thesis, we look at how boundary conditions can be weakly imposed on the Helmholtz equation.

Analysis

As in chapter 4, we must adapt the analysis of chapter 3 to apply to Helmholtz problems. The boundary operators for the Helmholtz equation satisfy less strong conditions than the operators for Laplace's equation (for Laplace's equation, the operators satisfy a condition called coercivity; for Helmholtz, the operators satisfy a weaker condition called Gårding's inequality), making proving results about Helmholtz problem harder.
After some work, we are able to prove an a priori error bound (with \(a=\tfrac32\) for the spaces we use):
$$\left\|u-u_h\right\|\leqslant ch^{a}\left\|u\right\|$$

Numerical results

As in the previous chapters, we use Bempp to show that computations with this method match the theory.
The error of our approximate solutions of a Dirichlet (left) and mixed Dirichlet–Neumann problems in the exterior of a sphere with meshes with different values of \(h\). The dashed lines show order \(\tfrac32\) convergence.

Wave scattering

Boundary element methods are often used to solve Helmholtz wave scattering problems. These are problems in which a sound wave is travelling though a medium (eg the air), then hits an object: you want to know what the sound wave that scatters off the object looks like.
If there are multiple objects that the wave is scattering off, the boundary element method formulation can get quite complicated. When using weak imposition, the formulation is simpler: this one advantage of this method.
The following diagram shows a sound wave scattering off a mixure of sound-hard and sound-soft spheres. Sound-hard objects reflect sound well, while sound-soft objects absorb it well.
A sound wave scattering off a mixture of sound-hard (white) and sound-soft (black) spheres.
If you are trying to design something with particular properties—for example, a barrier that absorbs sound—you may want to solve lots of wave scattering problems on an object on some objects with various values taken for their reflective properties. This type of problem is often called an inverse problem.
For this type of problem, weakly imposing boundary conditions has advantages: the discretisation of the Calderón projector can be reused for each problem, and only the terms due to the weakly imposed boundary conditions need to be recalculated. This is an advantages as the boundary condition terms are much less expensive (ie they use much less time and memory) to calculate than the Calderón term that is reused.

This concludes chapter 5, the final chapter of my thesis. Why not celebrate reaching the end by cracking open the following figure before reading the concluding blog post.
An acoustic wave scattering off a sound-hard champagne bottle and a sound-soft cork.
Previous post in series
This is the fifth post in a series of posts about my PhD thesis.
Next post in series
×3      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "o" then "d" then "d" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

braiding crochet books advent calendar graph theory pythagoras captain scarlet pi approximation day polynomials finite group cross stitch news wool python guest posts exponential growth golden spiral inline code simultaneous equations chalkdust magazine logs computational complexity raspberry pi nine men's morris approximation convergence wave scattering weather station numerical analysis geogebra mathsteroids ucl harriss spiral map projections bots turtles radio 4 estimation realhats databet a gamut of games go friendly squares people maths the aperiodical european cup hats recursion mean misleading statistics plastic ratio flexagons standard deviation cambridge bubble bobble royal institution data visualisation kings finite element method folding tube maps dates hexapawn manchester science festival craft curvature talking maths in public sorting edinburgh football dataset electromagnetic field bempp crossnumber rugby fractals matt parker statistics arithmetic interpolation oeis phd datasaurus dozen signorini conditions javascript live stream matrix of cofactors bodmas matrices ternary trigonometry frobel london fence posts runge's phenomenon golden ratio gerry anderson chess logo hannah fry countdown numbers triangles fonts draughts binary errors tmip light dragon curves game of life big internet math-off noughts and crosses gaussian elimination stickers error bars inverse matrices sobolev spaces logic menace youtube newcastle zines stirling numbers christmas national lottery manchester game show probability php video games programming world cup weak imposition puzzles reddit final fantasy matrix multiplication pascal's triangle accuracy propositional calculus rhombicuboctahedron determinants platonic solids quadrilaterals graphs geometry chebyshev anscombe's quartet dinosaurs london underground correlation tennis speed asteroids latex machine learning pizza cutting reuleaux polygons gather town christmas card pac-man regular expressions mathslogicbot hyperbolic surfaces probability games sport boundary element methods coins folding paper palindromes preconditioning pi squares mathsjam royal baby martin gardner 24 hour maths data matrix of minors sound

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025