mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Christmas card 2016

 2016-12-20 
Last week, I posted about the Christmas card I designed on the Chalkdust blog.
The card looks boring at first glance, but contains 12 puzzles. Converting the answers to base 3, writing them in the boxes on the front, then colouring the 1s green and 2s red will reveal a Christmassy picture.
If you want to try the card yourself, you can download this pdf. Alternatively, you can find the puzzles below and type the answers in the boxes. The answers will be automatically converted to base 3 and coloured...
#Answer (base 10)Answer (base 3)
1000000000
2000000000
3000000000
4000000000
5000000000
6000000000
7000000000
8000000000
9000000000
10000000000
11000000000
12000000000
  1. The square number larger than 1 whose square root is equal to the sum of its digits.
  2. The smallest square number whose factors add up to a different square number.
  3. The largest number that cannot be written in the form \(23n+17m\), where \(n\) and \(m\) are positive integers (or 0).
  4. Write down a three-digit number whose digits are decreasing. Write down the reverse of this number and find the difference. Add this difference to its reverse. What is the result?
  5. The number of numbers between 0 and 10,000,000 that do not contain the digits 0, 1, 2, 3, 4, 5 or 6.
  6. The lowest common multiple of 57 and 249.
  7. The sum of all the odd numbers between 0 and 66.
  8. One less than four times the 40th triangle number.
  9. The number of factors of the number \(2^{756}\)×\(3^{12}\).
  10. In a book with 13,204 pages, what do the page numbers of the middle two pages add up to?
  11. The number of off-diagonal elements in a 27×27 matrix.
  12. The largest number, \(k\), such that \(27k/(27+k)\) is an integer.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Matthew: Thank you for the prompt response! It makes sense now and perhaps I should have read a little closer!
Dan Whitman
                 Reply
@Dan Whitman: Find the difference between the original number and the reverse of the original. Call this difference \(a\). Next add \(a\) to the reverse of \(a\)...
Matthew
            ×1     Reply
In number 4 what are we to take the difference between? Do you mean the difference between the original number and its reverse? If so when you add the difference back to the reverse you simply get the original number, which is ambiguous. I am not sure what you are asking us to do here.
Dan Whitman
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "tneitouq" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

pythagoras craft raspberry pi speed statistics matrix multiplication binary hexapawn dates boundary element methods ucl weather station simultaneous equations data visualisation pi approximation day dataset crossnumber golden ratio turtles manchester science festival python asteroids php standard deviation martin gardner logs logo puzzles runge's phenomenon news error bars hannah fry interpolation curvature game of life cross stitch palindromes numbers go triangles sobolev spaces matrix of cofactors hats fence posts rugby inline code crochet oeis a gamut of games frobel nine men's morris advent calendar folding tube maps regular expressions matt parker countdown london zines javascript 24 hour maths hyperbolic surfaces quadrilaterals pi sorting recursion harriss spiral european cup wave scattering inverse matrices edinburgh menace data logic bempp folding paper determinants convergence electromagnetic field matrix of minors games christmas mathsteroids programming correlation mathslogicbot reuleaux polygons newcastle signorini conditions phd graphs coins sport computational complexity errors radio 4 people maths map projections football bodmas the aperiodical arithmetic geometry reddit dinosaurs bubble bobble light tmip golden spiral accuracy dragon curves big internet math-off royal institution fractals braiding estimation pac-man propositional calculus finite group trigonometry tennis live stream royal baby youtube machine learning realhats squares gerry anderson bots world cup approximation rhombicuboctahedron cambridge datasaurus dozen fonts guest posts stickers graph theory mean platonic solids talking maths in public stirling numbers matrices finite element method books captain scarlet exponential growth misleading statistics noughts and crosses game show probability ternary final fantasy wool sound gather town friendly squares pizza cutting chebyshev draughts chalkdust magazine probability numerical analysis manchester mathsjam national lottery latex weak imposition geogebra anscombe's quartet polynomials gaussian elimination chess flexagons kings pascal's triangle databet christmas card preconditioning london underground video games plastic ratio

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025