mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Build your own MENACE

 2022-02-26 
Surprisingly often, people ask me how they can build their own copy of MENACE. If you've been thinking that you'd love your own matchbox-powered machine learning computer but haven't got round to asking me about it yet, then this blog post is just what you're looking for.

Matchboxes

Before building MENACE, you'll need to get hold of 304 matchboxes (plus a few spares in case one gets lost or falls apart). I used these craft matchboxes: they don't have the best build quality, but they're good enough.

304 positions

The positions you need to glue onto the front of the matchboxes can be downloaded from this GitHub repository (first move boxes, third move boxes, fifth move boxes, seventh move boxes). These are sized to fit on matchboxes that have 15mm by 35mm fronts.
I printed each pdf on differently coloured paper to make it easier to sort the matchboxes after getting them out of their box.
If you get differently sized matchboxes, the code used the generate the PDFs is in the same GitHub repository (you'll need to modify these lines). Alternatively, feel free to drop me an email and I will happily adjust the sizes for you and send you the updated PDFs.

Glue

I used PVA glue to stick the positions onto the matchboxes. The printable PDFs have extra tabs of paper above and below the postions that can be glued in to the bottom and inside of the matchbox tray to hold it more securely.
Gluing the positions onto the matchboxes was the most time consuming part of building my copy of MENACE, largely due to having to wait for the glue to dry on a set of matchboxes before I had space for the next batch of them to dry.

Beads

Once you've glued pictures of noughts and crosses positions to 304 matchboxes, you'll need to put coloured beads into each matchbox. For this, I used a large tub of Hama beads (that tub contained orders of magnitude more beads than I needed).
A nice side effect of using Hama beads is that they're designed to be ironed together so making a key to show which colour corresponds to each position is very easy.
I typically start the boxes off with 8 beads of each colour in the first move box, 4 of each colour in the third move boxes, 2 of each in the fifth move boxes, and one of each in the seventh move boxes.

Once you've filled all your matchboxes with the correct number of beads, you're ready to play yout first game against MENACE. I'd love to hear how you get on.
And once you're bored of playing noughts and crosses against your matchboxes, why not build a machine that learns to play Hexapawn, Connect 4, Chess or Go? Or one that plays Nim?
Edit: Added link to the printable pdfs of the positions needed for Hexapawn, made by Dan Whitman.
×11      ×6      ×5      ×6      ×7
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Interesting.
Could try a same kind of thing using playing card deck(s)? A(=1)-2-3 4-5-6 7-8-9 maybe 3 decks with different colours on their backs.
Willem
×3   ×3   ×3   ×3   ×2     Reply
this if great!
Djonwaw
×2   ×2   ×2   ×2   ×2     Reply
I also read the Martin Gardner article way back when and had two matchbox machines (actually with envelopes instead of matchboxes) play Nim against each other. I don't remember all the details now, except that it got to the point where one would make the first move and the other would immediately resign.
Tim Lewis
×5   ×2   ×2   ×2   ×2     Reply
I made a matchbox machine that learns to play 3x3 Nim almost 50 years ago. I still have it. (Based on Martin Gardner's article)
Tony
×7   ×4   ×2   ×2   ×3     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "tneitouq" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

geogebra numbers game of life dataset javascript royal institution pi probability estimation oeis christmas european cup braiding hats martin gardner electromagnetic field chess fence posts approximation matt parker draughts cross stitch a gamut of games inline code golden ratio realhats statistics standard deviation polynomials map projections friendly squares manchester bempp latex signorini conditions countdown live stream games crossnumber pac-man mathslogicbot sobolev spaces matrix multiplication raspberry pi radio 4 graph theory edinburgh big internet math-off 24 hour maths cambridge computational complexity books news propositional calculus databet matrix of minors football programming data noughts and crosses folding tube maps palindromes matrix of cofactors puzzles mathsteroids reddit crossnumbers newcastle speed dates weather station triangles geometry reuleaux polygons national lottery folding paper chalkdust magazine captain scarlet quadrilaterals london logic finite group determinants advent calendar world cup hannah fry matrices recursion mathsjam plastic ratio misleading statistics craft interpolation inverse matrices chebyshev light gather town final fantasy graphs gaussian elimination hexapawn flexagons simultaneous equations hyperbolic surfaces logo correlation curvature binary london underground data visualisation python tmip video games asteroids tennis dinosaurs talking maths in public pizza cutting bubble bobble sport runge's phenomenon youtube bodmas preconditioning pythagoras stickers coins ternary menace convergence zines frobel pascal's triangle regular expressions golden spiral fonts guest posts datasaurus dozen bots nine men's morris gerry anderson arithmetic phd machine learning turtles finite element method wave scattering boundary element methods pi approximation day the aperiodical trigonometry crosswords logs sound harriss spiral errors dragon curves weak imposition squares royal baby accuracy wool numerical analysis ucl stirling numbers people maths manchester science festival rhombicuboctahedron crochet christmas card rugby mean error bars platonic solids exponential growth sorting fractals anscombe's quartet go kings php game show probability

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025