mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

The end of coins of constant width

 2017-03-27 
Tomorrow, the new 12-sided one pound coin is released.
Although I'm excited about meeting this new coin, I am also a little sad, as its release ends the era in which all British coins are shapes of constant width.

Shapes of constant width

A shape of constant width is a shape that is the same width in every direction, so these shapes can roll without changing height. The most obvious such shape is a circle. But there are others, including the shape of the seven-sided 50p coin.
As shown below, each side of a 50p is part of a circle centred around the opposite corner. As a 50p rolls, its height is always the distance between one of the corners and the side opposite, or in other words the radius of this circle. As these circles are all the same size, the 50p is a shape of constant width.
Shapes of constant width can be created from any regular polygon with an odd number of sides, by replacing the sides by parts of circles centred at the opposite corner. The first few are shown below.
It's also possible to create shapes of constant width from irregular polygons with an odd number, but it's not possible to create them from polygons with an even number of sides. Therefore, the new 12-sided pound coin will be the first non-constant width British coin since the (also 12-sided) threepenny bit was phased out in 1971.
Back in 2014, I wrote to my MP in an attempt to find out why the new coin was not of a constant width. He forwarded my letter to the Treasury, but I never heard back from them.

Pizza cutting

When cutting a pizza into equal shaped pieces, the usual approach is to cut along a few diameters to make triangles. There are other ways to fairly share pizza, including the following (that has appeared here before as an answer to this puzzle):
The slices in this solution are closely related to a triangle of constant width. Solutions can be made using other shapes of constant width, including the following, made using a constant width pentagon and heptagon (50p):
There are many more ways to cut a pizza into equal pieces. You can find them in Infinite families of monohedral disk tilings by Joel Haddley and Stephen Worsley [1].
You can't use the shape of a new pound coin to cut a pizza though.
Edit: Speaking of new £1 coins, I made this stupid video with Adam "Frownsend" Townsend about them earlier today:

Infinite families of monohedral disk tilings by Joel Haddley and Stephen Worsley. December 2015. [link]

Similar posts

New machine unfriendly £1 coin, pt. 2
New machine unfriendly £1 coin
World Cup stickers 2018, pt. 3
World Cup stickers 2018, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "v" then "e" then "c" then "t" then "o" then "r" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jul 2020

Happy √3e3τ-87 Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

php logic reuleaux polygons london football mathsjam ternary a gamut of games electromagnetic field golden ratio tmip sobolev spaces latex python geometry reddit braiding exponential growth fractals palindromes christmas sorting royal institution flexagons pi approximation day probability quadrilaterals stickers weather station games countdown cross stitch arithmetic pythagoras phd approximation graphs chess matrix multiplication craft menace oeis noughts and crosses london underground pi captain scarlet sound interpolation books nine men's morris radio 4 boundary element methods big internet math-off dataset programming inverse matrices frobel speed cambridge matrix of cofactors hannah fry coins chebyshev matt parker convergence mathsteroids geogebra game of life accuracy royal baby signorini conditions european cup rhombicuboctahedron machine learning determinants news polynomials dates data bodmas pizza cutting folding tube maps error bars javascript logs people maths go statistics weak imposition matrix of minors pac-man computational complexity the aperiodical video games squares matrices chalkdust magazine curvature manchester science festival wave scattering inline code twitter manchester map projections golden spiral world cup propositional calculus preconditioning harriss spiral draughts folding paper bempp talking maths in public triangles raspberry pi estimation hexapawn binary martin gardner platonic solids national lottery simultaneous equations hats puzzles numerical analysis gaussian elimination sport game show probability misleading statistics ucl christmas card tennis data visualisation light gerry anderson wool advent calendar final fantasy trigonometry dragon curves graph theory asteroids rugby finite element method plastic ratio bubble bobble mathslogicbot realhats

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020