mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2018-09-13 
This is a post I wrote for round 2 of The Aperiodical's Big Internet Math-Off 2018. As I went out in round 1 of the Big Math-Off, you got to read about the real projective plane instead of this.
Polynomials are very nice functions: they're easy to integrate and differentiate, it's quick to calculate their value at points, and they're generally friendly to deal with. Because of this, it can often be useful to find a polynomial that closely approximates a more complicated function.
Imagine a function defined for \(x\) between -1 and 1. Pick \(n-1\) points that lie on the function. There is a unique degree \(n\) polynomial (a polynomial whose highest power of \(x\) is \(x^n\)) that passes through these points. This polynomial is called an interpolating polynomial, and it sounds like it ought to be a pretty good approximation of the function.
So let's try taking points on a function at equally spaced values of \(x\), and try to approximate the function:
$$f(x)=\frac1{1+25x^2}$$
Polynomial interpolations of \(\displaystyle f(x)=\frac1{1+25x^2}\) using equally spaced points
I'm sure you'll agree that these approximations are pretty terrible, and they get worse as more points are added. The high error towards 1 and -1 is called Runge's phenomenon, and was discovered in 1901 by Carl David Tolmé Runge.
All hope of finding a good polynomial approximation is not lost, however: by choosing the points more carefully, it's possible to avoid Runge's phenomenon. Chebyshev points (named after Pafnuty Chebyshev) are defined by taking the \(x\) co-ordinate of equally spaced points on a circle.
Eight Chebyshev points
The following GIF shows interpolating polynomials of the same function as before using Chebyshev points.
Nice, we've found a polynomial that closely approximates the function... But I guess you're now wondering how well the Chebyshev interpolation will approximate other functions. To find out, let's try it out on the votes over time of my first round Big Internet Math-Off match.
Scroggs vs Parker, 6-8 July 2018
The graphs below show the results of the match over time interpolated using 16 uniform points (left) and 16 Chebyshev points (right). You can see that the uniform interpolation is all over the place, but the Chebyshev interpolation is very close the the actual results.
Scroggs vs Parker, 6-8 July 2018, approximated using uniform points (left) and Chebyshev points (right)
But maybe you still want to see how good Chebyshev interpolation is for a function of your choice... To help you find out, I've written @RungeBot, a Twitter bot that can compare interpolations with equispaced and Chebyshev points. Just tweet it a function, and it'll show you how bad Runge's phenomenon is for that function, and how much better Chebysheb points are.
A list of constants and functions that RungeBot understands can be found here.

Similar posts

A surprising fact about quadrilaterals
Interesting tautologies
Big Internet Math-Off stickers 2019
Mathsteroids

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "jump" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jul 2020

Happy √3e3τ-87 Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

pac-man speed draughts boundary element methods a gamut of games curvature simultaneous equations reddit asteroids flexagons geometry exponential growth determinants platonic solids folding tube maps london christmas card computational complexity menace matrices talking maths in public electromagnetic field people maths graphs london underground propositional calculus fractals arithmetic statistics football finite element method pi gaussian elimination tmip data visualisation quadrilaterals advent calendar games pi approximation day numerical analysis trigonometry realhats tennis interpolation coins palindromes craft error bars martin gardner inline code folding paper hannah fry estimation matrix multiplication radio 4 weak imposition hexapawn matt parker captain scarlet bodmas weather station sport chalkdust magazine data probability rhombicuboctahedron golden spiral golden ratio signorini conditions mathsjam royal baby logs bempp manchester puzzles reuleaux polygons misleading statistics wool latex big internet math-off final fantasy cambridge national lottery convergence stickers approximation inverse matrices european cup noughts and crosses countdown video games royal institution game show probability dragon curves christmas accuracy frobel sobolev spaces world cup graph theory hats the aperiodical light nine men's morris chess twitter news mathsteroids pythagoras logic preconditioning wave scattering dates machine learning go phd pizza cutting dataset braiding sound programming books manchester science festival javascript rugby sorting binary matrix of minors chebyshev oeis gerry anderson map projections python triangles polynomials ucl harriss spiral plastic ratio raspberry pi bubble bobble geogebra ternary mathslogicbot matrix of cofactors cross stitch php game of life squares

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020