mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Archive

Show me a Random Blog Post
 2017 
 2016 
 2015 
 2014 
 2013 
 2012 

Tags

folding paper folding tube maps london underground platonic solids rhombicuboctahedron raspberry pi weather station programming python php inline code news royal baby probability game show probability christmas flexagons frobel coins reuleaux polygons countdown football world cup sport stickers tennis braiding craft wool emf camp people maths trigonometry logic propositional calculus twitter mathslogicbot oeis pac-man graph theory video games games chalkdust magazine menace machine learning javascript martin gardner reddit national lottery rugby puzzles advent game of life dragon curves fractals pythagoras geometry triangles european cup dates palindromes chalkdust christmas card bubble bobble asteroids final fantasy curvature binary arithmetic bodmas statistics error bars estimation accuracy misleading statistics pizza cutting

Archive

Show me a Random Blog Post
▼ show ▼
 2015-03-15 15:14:29 

Logic Bot, pt. 2

A few months ago, I set @mathslogicbot going on the long task of tweeting all the tautologies (containing 140 characters or less) in propositional calculus with the symbols \(\neg\) (not), \(\rightarrow\) (implies), \(\leftrightarrow\) (if and only if), \(\wedge\) (and) and \(\vee\) (or). My first post on logic bot contains a full explanation of propositional calculus, formulae and tautologies.

An Alternative Method

Since writing the original post, I have written an alternative script to generate all the tautologies. In this new method, I run through all possible strings of length 1 made with character in the logical language, then strings of length 2, 3 and so on. The script then checks if they are valid formulae and, if so, if they are tautologies.
In the new script, only formulae where the first appearances of variables are in alphabetical order are considered. This means that duplicate tautologies are removed. For example, \((b\rightarrow(b\wedge a))\) will not be counted as it is the same as \((a\rightarrow(a\wedge b))\).
You can view or download this alternative code on github. All the terms of the sequence that I have calculated so far can be viewed here and the tautologies for these terms are here.

Sequence

One advantage of this method is that it generates the tautologies sorted by the number of symbols they contain, meaning we can generate the sequence whose \(n\)th term is the number of tautologies of length \(n\).
The first ten terms of this sequence are
$$0, 0, 0, 0, 2, 2, 12, 6, 57, 88$$
as there are no tautologies of length less than 5; and, for example two tautologies of length 6 (\((\neg a\vee a)\) and \((a\vee \neg a)\)).
This sequence is listed as A256120 on OEIS.

Properties

There are a few properties of this sequence that can easily be shown. Throughout this section I will use \(a_n\) to represent the \(n\)th term of the sequence.
Firstly, \(a_{n+2}\geq a_n\). This can be explained as follows: let \(A\) be a tautology of length \(n\). \(\neg\neg A\) will be of length \(n+2\) and is logically equivalent to \(A\).
Another property is \(a_{n+4}\geq 2a_n\): given a tautology \(A\) of length \(n\), both \((a\vee A)\) and \((A\vee a)\) will be tautologies of length \(n+4\). Similar properties could be shown for \(\rightarrow\), \(\leftrightarrow\) and \(\wedge\).
Given properties like this, one might predict that the sequence will be increasing (\(a_{n+1}\geq a_n\)). However this is not true as \(a_7\) is 12 and \(a_8\) is only 6. It would be interesting to know at how many points in the sequence there is a term that is less than the previous one. Given the properties above it is reasonable to conjecture that this is the only one.
Edit: The sequence has been published on OEIS!

Similar Posts

Logical Contradictions
Logic Bot
How OEISbot Works
Raspberry Pi Weather Station

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

To prove you are not a spam bot, please type "eat" in the box below (case sensitive):
© Matthew Scroggs 2017