mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Logic bot, pt. 2

 2015-03-15 
A few months ago, I set @mathslogicbot (and @logicbot@mathstodon.xyz and @logicbot.bsky.social) going on the long task of tweeting all the tautologies (containing 140 characters or less) in propositional calculus with the symbols \(\neg\) (not), \(\rightarrow\) (implies), \(\leftrightarrow\) (if and only if), \(\wedge\) (and) and \(\vee\) (or). My first post on logic bot contains a full explanation of propositional calculus, formulae and tautologies.

An alternative method

Since writing the original post, I have written an alternative script to generate all the tautologies. In this new method, I run through all possible strings of length 1 made with character in the logical language, then strings of length 2, 3 and so on. The script then checks if they are valid formulae and, if so, if they are tautologies.
In the new script, only formulae where the first appearances of variables are in alphabetical order are considered. This means that duplicate tautologies are removed. For example, \((b\rightarrow(b\wedge a))\) will now be counted as it is the same as \((a\rightarrow(a\wedge b))\).
You can view or download this alternative code on github. All the terms of the sequence that I have calculated so far can be viewed here and the tautologies for these terms are here.

Sequence

One advantage of this method is that it generates the tautologies sorted by the number of symbols they contain, meaning we can generate the sequence whose \(n\)th term is the number of tautologies of length \(n\).
The first ten terms of this sequence are
$$0, 0, 0, 0, 2, 2, 12, 6, 57, 88$$
as there are no tautologies of length less than 5; and, for example two tautologies of length 6 (\((\neg a\vee a)\) and \((a\vee \neg a)\)).
This sequence is listed as A256120 on OEIS.

Properties

There are a few properties of this sequence that can easily be shown. Throughout this section I will use \(a_n\) to represent the \(n\)th term of the sequence.
Firstly, \(a_{n+2}\geq a_n\). This can be explained as follows: let \(A\) be a tautology of length \(n\). \(\neg\neg A\) will be of length \(n+2\) and is logically equivalent to \(A\).
Another property is \(a_{n+4}\geq 2a_n\): given a tautology \(A\) of length \(n\), both \((a\vee A)\) and \((A\vee a)\) will be tautologies of length \(n+4\). Similar properties could be shown for \(\rightarrow\), \(\leftrightarrow\) and \(\wedge\).
Given properties like this, one might predict that the sequence will be increasing (\(a_{n+1}\geq a_n\)). However this is not true as \(a_7\) is 12 and \(a_8\) is only 6. It would be interesting to know at how many points in the sequence there is a term that is less than the previous one. Given the properties above it is reasonable to conjecture that this is the only one.
Edit: The sequence has been published on OEIS!
Edit: Added Mastodon and Bluesky links
×5      ×3      ×3      ×3      ×3
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Great project! Would be interesting to have a version of this for the sheffer stroke.
om
×3   ×3   ×3   ×1   ×3     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "a" then "x" then "e" then "s" in the box below (case sensitive):

Archive

Show me a random blog post
 2025 

Mar 2025

How to write a crossnumber

Jan 2025

Christmas (2024) is over
Friendly squares
 2024 
▼ show ▼
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

national lottery video games pascal's triangle ucl estimation determinants python chebyshev a gamut of games geometry phd chess newcastle christmas card error bars advent calendar london sobolev spaces php golden ratio reddit braiding recursion mathslogicbot palindromes draughts anscombe's quartet datasaurus dozen matrix multiplication stirling numbers realhats javascript royal institution numbers london underground trigonometry crosswords craft youtube puzzles pi approximation day crochet platonic solids mathsteroids preconditioning go books wave scattering turtles finite element method chalkdust magazine folding paper matrices games hannah fry sport royal baby plastic ratio nine men's morris matrix of cofactors machine learning rugby cambridge dates databet frobel crossnumbers gerry anderson matt parker kings computational complexity wool finite group weak imposition errors dinosaurs rhombicuboctahedron final fantasy noughts and crosses latex golden spiral logs statistics martin gardner menace pythagoras triangles bodmas boundary element methods european cup approximation 24 hour maths bubble bobble hats cross stitch sorting fractals dataset bots correlation regular expressions logic logo hexapawn game of life probability dragon curves misleading statistics manchester science festival geogebra sound people maths quadrilaterals zines accuracy edinburgh matrix of minors the aperiodical asteroids friendly squares inline code programming curvature bempp squares mathsjam big internet math-off arithmetic reuleaux polygons propositional calculus interpolation flexagons signorini conditions gather town stickers numerical analysis countdown raspberry pi runge's phenomenon standard deviation fence posts binary speed talking maths in public mean coins pac-man data light news crossnumber oeis live stream tennis captain scarlet manchester map projections fonts graphs folding tube maps hyperbolic surfaces world cup graph theory guest posts pi tmip game show probability weather station radio 4 exponential growth football gaussian elimination inverse matrices polynomials pizza cutting simultaneous equations christmas data visualisation ternary harriss spiral electromagnetic field convergence

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2025