mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

17 December

If you expand \((a+b+c)^2\), you get \(a^2+b^2+c^2+2ab+2ac+2bc\). This has 6 terms.
How many terms does the expansion of \((a+b+c+d+e+f)^5\) have?

Show answer

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

10 December

For all values of \(x\), the function \(f(x)=ax+b\) satisfies
$$8x-8-x^2\leqslant f(x)\leqslant x^2.$$
What is \(f(65)\)?
Edit: The left-hand quadratic originally said \(8-8x-x^2\). This was a typo and has now been corrected.

Show answer

7 December

The sum of the coefficients in the expansion of \((x+1)^5\) is 32. Today's number is the sum of the coefficients in the expansion of \((2x+1)^5\).

Show answer

Tags: algebra

18 December

There are 6 terms in the expansion of \((x+y+z)^2\):
$$(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz$$
Today's number is number of terms in the expansion of \((x+y+z)^{16}\).

Show answer

Tags: algebra

10 December

The equation \(x^2+1512x+414720=0\) has two integer solutions.
Today's number is the number of (positive or negative) integers \(b\) such that \(x^2+bx+414720=0\) has two integer solutions.

Show answer

Powerful quadratics

Source: nrich
Find all real solutions to
$$(x^2-7x+11)^{(x^2-11x+30)}=1.$$

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

perimeter odd numbers chocolate bases axes surds even numbers christmas combinatorics symmetry doubling number spheres powers tournaments differentiation unit fractions cryptic clues area integers decahedra regular shapes prime numbers perfect numbers square roots median shape sum to infinity neighbours dodecagons 2d shapes rugby rectangles taxicab geometry volume factorials binary means chess numbers grids gerrymandering people maths medians menace clocks tangents time square numbers games mean division dominos probability ellipses shapes fractions 3d shapes consecutive integers squares multiples coins ave books sequences matrices complex numbers pascal's triangle products cube numbers star numbers wordplay planes sets circles parabolas graphs multiplication square grids algebra elections expansions dates routes probabilty dice digital products averages functions remainders balancing quadratics irreducible numbers geometric means floors percentages sums money coordinates addition cubics albgebra calculus colouring triangle numbers partitions geometric mean sport determinants range hexagons geometry pentagons integration consecutive numbers cryptic crossnumbers crosswords grids triangles folding tube maps speed arrows palindromes the only crossnumber digits lines chalkdust crossnumber angles numbers polygons advent indices trigonometry scales polynomials crossnumbers proportion quadrilaterals logic tiling factors cards digital clocks

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025