mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

17 December

If you expand \((a+b+c)^2\), you get \(a^2+b^2+c^2+2ab+2ac+2bc\). This has 6 terms.
How many terms does the expansion of \((a+b+c+d+e+f)^5\) have?

Show answer

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

10 December

For all values of \(x\), the function \(f(x)=ax+b\) satisfies
$$8x-8-x^2\leqslant f(x)\leqslant x^2.$$
What is \(f(65)\)?
Edit: The left-hand quadratic originally said \(8-8x-x^2\). This was a typo and has now been corrected.

Show answer

7 December

The sum of the coefficients in the expansion of \((x+1)^5\) is 32. Today's number is the sum of the coefficients in the expansion of \((2x+1)^5\).

Show answer

Tags: algebra

18 December

There are 6 terms in the expansion of \((x+y+z)^2\):
$$(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz$$
Today's number is number of terms in the expansion of \((x+y+z)^{16}\).

Show answer

Tags: algebra

10 December

The equation \(x^2+1512x+414720=0\) has two integer solutions.
Today's number is the number of (positive or negative) integers \(b\) such that \(x^2+bx+414720=0\) has two integer solutions.

Show answer

Powerful quadratics

Source: nrich
Find all real solutions to
$$(x^2-7x+11)^{(x^2-11x+30)}=1.$$

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

pascal's triangle albgebra cards calculus geometric mean polygons even numbers consecutive numbers pentagons averages speed geometric means games scales square numbers coins quadrilaterals square grids lines sum to infinity polynomials perfect numbers dodecagons probabilty doubling percentages chess chalkdust crossnumber complex numbers grids quadratics fractions coordinates cube numbers people maths consecutive integers numbers grids digits graphs ellipses gerrymandering sets star numbers functions geometry balancing medians addition products division proportion shape irreducible numbers axes books cryptic crossnumbers planes mean tangents neighbours sums elections surds sequences powers numbers differentiation dates sport menace binary integration square roots chocolate palindromes multiplication matrices indices factorials range determinants probability angles taxicab geometry unit fractions cryptic clues the only crossnumber crossnumbers means parabolas spheres median prime numbers number circles arrows decahedra advent 2d shapes tiling ave factors floors squares tournaments remainders area rectangles perimeter bases digital clocks shapes crossnumber crosswords expansions colouring clocks christmas volume folding tube maps algebra 3d shapes rugby digital products routes odd numbers multiples dominos logic cubics triangles triangle numbers combinatorics wordplay partitions integers symmetry hexagons money trigonometry regular shapes dice time

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025