mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

An integral

Source: Alex Bolton (inspired by Book Proofs blog)
What is
$$\int_0^{\frac\pi2}\frac1{1+\tan^a(x)}\,dx?$$

Show hint


Show answer & extension

Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

Integrals

$$\int_0^1 1 dx = 1$$
Find \(a_1\) such that:
$$\int_0^{a_1} x dx = 1$$
Find \(a_2\) such that:
$$\int_0^{a_2} x^2 dx = 1$$
Find \(a_n\) such that (for \(n>0\)):
$$\int_0^{a_n} x^n dx = 1$$

Show answer & extension

Double derivative

What is
$$\frac{d}{dy}\left(\frac{dy}{dx}\right)$$
when:
(i) \(y=x\)
(ii) \(y=x^2\)
(iii) \(y=x^3\)
(iv) \(y=x^n\)
(v) \(y=e^x\)
(vi) \(y=\sin(x)\)?

Show answer & extension

Differentiate this

$$f(x)=e^{x^{ \frac{\ln{\left(\ln{x}\right)}}{ \ln{x}}} }$$
Find \(f'(x)\).

Show answer

x to the power of x again

Let \(y=x^{x^{x^{x^{...}}}}\) [\(x\) to the power of (\(x\) to the power of (\(x\) to the power of (\(x\) to the power of ...))) with an infinite number of \(x\)s]. What is \(\frac{dy}{dx}\)?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

products scales parabolas indices squares fractions quadratics coordinates probability crossnumber cryptic clues cube numbers calculus games algebra graphs shapes square numbers square roots elections factorials unit fractions odd numbers surds crosswords remainders triangles floors 3d shapes chalkdust crossnumber probabilty balancing range folding tube maps perimeter means averages crossnumbers people maths division percentages digits sum to infinity sums christmas cryptic crossnumbers the only crossnumber hexagons circles numbers money chess books speed polygons coins palindromes irreducible numbers rugby pascal's triangle planes rectangles multiples clocks symmetry median colouring prime numbers integration menace perfect numbers proportion functions cards dominos integers angles advent geometry ave gerrymandering routes star numbers chocolate grids taxicab geometry doubling arrows multiplication volume dodecagons area time logic trigonometry tiling shape dates digital clocks spheres mean 2d shapes sequences addition number dice wordplay regular shapes lines bases ellipses factors triangle numbers complex numbers differentiation partitions sport

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020