mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

An integral

Source: Alex Bolton (inspired by Book Proofs blog)
What is
$$\int_0^{\frac\pi2}\frac1{1+\tan^a(x)}\,dx?$$

Show hint


Show answer & extension

Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

Integrals

$$\int_0^1 1 dx = 1$$
Find \(a_1\) such that:
$$\int_0^{a_1} x dx = 1$$
Find \(a_2\) such that:
$$\int_0^{a_2} x^2 dx = 1$$
Find \(a_n\) such that (for \(n>0\)):
$$\int_0^{a_n} x^n dx = 1$$

Show answer & extension

Double derivative

What is
$$\frac{d}{dy}\left(\frac{dy}{dx}\right)$$
when:
(i) \(y=x\)
(ii) \(y=x^2\)
(iii) \(y=x^3\)
(iv) \(y=x^n\)
(v) \(y=e^x\)
(vi) \(y=\sin(x)\)?

Show answer & extension

Differentiate this

$$f(x)=e^{x^{ \frac{\ln{\left(\ln{x}\right)}}{ \ln{x}}} }$$
Find \(f'(x)\).

Show answer

x to the power of x again

Let \(y=x^{x^{x^{x^{...}}}}\) [\(x\) to the power of (\(x\) to the power of (\(x\) to the power of (\(x\) to the power of ...))) with an infinite number of \(x\)s]. What is \(\frac{dy}{dx}\)?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

chalkdust crossnumber geometric means ellipses number division dominos crossnumbers cryptic crossnumbers crossnumber dodecagons cubics partitions arrows geometric mean factors combinatorics grids factorials parabolas colouring area polygons gerrymandering speed complex numbers palindromes indices range scales books regular shapes advent star numbers probabilty quadrilaterals axes fractions albgebra wordplay cards probability surds clocks ave dice percentages crosswords sequences money quadratics matrices triangles people maths menace rectangles decahedra spheres products addition determinants symmetry logic perimeter mean doubling sport chocolate digits sums pascal's triangle rugby calculus median angles prime numbers time pentagons planes chess perfect numbers bases odd numbers numbers coordinates christmas elections remainders digital clocks hexagons sets balancing the only crossnumber multiples algebra binary averages taxicab geometry shapes lines sum to infinity multiplication triangle numbers irreducible numbers polynomials cryptic clues square numbers expansions games tangents tournaments graphs routes geometry 2d shapes 3d shapes differentiation proportion volume unit fractions functions trigonometry tiling integration digital products consecutive numbers shape consecutive integers means square roots even numbers integers squares circles coins folding tube maps floors dates cube numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024