# Puzzles

## 6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),

$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?

## Between quadratics

Source: Luciano Rila (@DrTrapezio)

\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),

$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

## Bézier curve

A Bézier curve is created as follows:

1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).

2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).

3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).

.

.

.

\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:

$$P_0=\left(0,1\right)$$
$$P_1=\left(0,0\right)$$
$$P_2=\left(1,0\right)$$## Parabola

Source:

*Alex Through the Looking-Glass: How Life Reflects Numbers and Numbers Reflect Life*by Alex BellosOn a graph of \(y=x^2\), two lines are drawn at \(x=a\) and \(x=-b\) (for \(a,b>0\). The points where these lines intersect the parabola are connected.

What is the y-coordinate of the point where this line intersects the y-axis?

## Two lines

Let A and B be two straight lines such that the gradient of A is the y-intercept of B and the y-intercept of A is the gradient of B (the gradient and y-intercept of A are not the same). What are the co-ordinates of the point where the lines meet?

## Archive

Show me a random puzzle**Most recent collections**

#### Sunday Afternoon Maths LXVII

Coloured weightsNot Roman numerals

#### Advent calendar 2018

#### Sunday Afternoon Maths LXVI

Cryptic crossnumber #2#### Sunday Afternoon Maths LXV

Cryptic crossnumber #1Breaking Chocolate

Square and cube endings

List of all puzzles

## Tags

complex numbers means probabilty functions percentages star numbers palindromes symmetry integration taxicab geometry addition scales hexagons polygons angles remainders menace 3d shapes trigonometry unit fractions prime numbers geometry balancing cryptic clues cards bases area colouring multiplication volume sums regular shapes irreducible numbers spheres doubling logic factors lines time integers christmas planes graphs digits dodecagons rugby sum to infinity fractions dates advent ave cube numbers parabolas mean algebra quadratics grids crossnumbers arrows money people maths square numbers number clocks indices books perimeter averages 2d shapes partitions ellipses division multiples circles routes numbers calculus speed perfect numbers differentiation factorials dice probability sport chess triangles square roots coins sequences odd numbers cryptic crossnumbers squares coordinates floors proportion pascal's triangle chocolate surds folding tube maps shape wordplay chalkdust crossnumber rectangles games triangle numbers shapes crosswords**© Matthew Scroggs 2019**