mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

20 December

p(x) is a polynomial with integer coefficients such that:
What is p(23)?

Show answer

23 December

I draw the parabola \(y=x^2\) and mark points on the parabola at \(x=17\) and \(x=-6\). I then draw a straight line connecting these two points.
At which value of \(y\) does this line intercept the \(y\)-axis?

Show answer

19 December

The equation \(352x^3-528x^2+90=0\) has three distinct real-valued solutions.
Today's number is the number of integers \(a\) such that the equation \(352x^3-528x^2+a=0\) has three distinct real-valued solutions.

Show answer

Tags: graphs, cubics

10 December

For all values of \(x\), the function \(f(x)=ax+b\) satisfies
$$8x-8-x^2\leqslant f(x)\leqslant x^2.$$
What is \(f(65)\)?
Edit: The left-hand quadratic originally said \(8-8x-x^2\). This was a typo and has now been corrected.

Show answer

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?

Two tangents

Source: Reddit
Find a line which is tangent to the curve \(y=x^4-4x^3\) at 2 points.

Show answer

Between quadratics

Source: Luciano Rila (@DrTrapezio)
\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),
$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

Show answer

Bézier curve

A Bézier curve is created as follows:
1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).
2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).
3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).
.
.
.
\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:
$$P_0=\left(0,1\right)$$ $$P_1=\left(0,0\right)$$ $$P_2=\left(1,0\right)$$

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

scales cryptic clues elections irreducible numbers surds symmetry square roots square grids median shape ave averages squares hexagons numbers grids cubics square numbers area combinatorics digital products prime numbers products partitions parabolas chalkdust crossnumber geometry clocks speed perimeter angles rectangles albgebra tournaments cards perfect numbers dice polynomials remainders routes number lines books multiples decahedra grids proportion digital clocks regular shapes coordinates colouring quadratics triangles folding tube maps pascal's triangle games balancing powers cryptic crossnumbers algebra gerrymandering crosswords range chess binary integration matrices rugby cube numbers sequences medians probability bases logic money graphs consecutive numbers 2d shapes sets dodecagons 3d shapes unit fractions multiplication probabilty tangents taxicab geometry arrows wordplay odd numbers differentiation advent even numbers planes dominos crossnumbers triangle numbers consecutive integers quadrilaterals numbers christmas geometric means calculus integers menace factorials tiling sums factors division trigonometry doubling digits spheres geometric mean neighbours fractions volume expansions functions floors addition shapes people maths polygons axes indices percentages the only crossnumber sport mean star numbers palindromes chocolate ellipses dates circles means coins complex numbers sum to infinity determinants crossnumber pentagons time

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025