mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

23 December

I draw the parabola \(y=x^2\) and mark points on the parabola at \(x=17\) and \(x=-6\). I then draw a straight line connecting these two points.
At which value of \(y\) does this line intercept the \(y\)-axis?

Show answer

19 December

The equation \(352x^3-528x^2+90=0\) has three distinct real-valued solutions.
Today's number is the number of integers \(a\) such that the equation \(352x^3-528x^2+a=0\) has three distinct real-valued solutions.

Show answer

Tags: graphs, cubics

10 December

For all values of \(x\), the function \(f(x)=ax+b\) satisfies
$$8x-8-x^2\leqslant f(x)\leqslant x^2.$$
What is \(f(65)\)?
Edit: The left-hand quadratic originally said \(8-8x-x^2\). This was a typo and has now been corrected.

Show answer

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?

Two tangents

Source: Reddit
Find a line which is tangent to the curve \(y=x^4-4x^3\) at 2 points.

Show answer

Between quadratics

Source: Luciano Rila (@DrTrapezio)
\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),
$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

Show answer

Bézier curve

A Bézier curve is created as follows:
1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).
2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).
3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).
.
.
.
\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:
$$P_0=\left(0,1\right)$$ $$P_1=\left(0,0\right)$$ $$P_2=\left(1,0\right)$$

Show answer & extension

Parabola

On a graph of \(y=x^2\), two lines are drawn at \(x=a\) and \(x=-b\) (for \(a,b>0\). The points where these lines intersect the parabola are connected.
What is the y-coordinate of the point where this line intersects the y-axis?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

decahedra grids 2d shapes digital products differentiation regular shapes cards quadrilaterals cryptic clues dates rectangles albgebra complex numbers proportion elections dice symmetry money digital clocks trigonometry expansions median advent irreducible numbers shape star numbers shapes binary planes addition factors angles factorials multiples crosswords partitions tangents lines probabilty cubics quadratics folding tube maps rugby remainders sums pascal's triangle graphs geometry division dominos palindromes sequences pentagons prime numbers doubling floors taxicab geometry crossnumbers surds the only crossnumber averages tiling fractions arrows spheres perimeter dodecagons sum to infinity games square numbers percentages triangle numbers bases algebra chocolate parabolas crossnumber geometric mean christmas clocks probability functions digits combinatorics products coins even numbers routes volume logic odd numbers ellipses number sets numbers geometric means unit fractions colouring squares integers time balancing people maths indices 3d shapes axes wordplay tournaments ave square roots hexagons cryptic crossnumbers scales mean consecutive numbers integration speed determinants menace sport chalkdust crossnumber chess calculus polygons cube numbers range polynomials matrices perfect numbers multiplication consecutive integers means area circles triangles books coordinates gerrymandering

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024