mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

binary means albgebra sums doubling consecutive numbers dodecagons planes pascal's triangle wordplay rugby hexagons cryptic clues circles games unit fractions graphs squares rectangles addition number sequences speed probability integers integration digital products volume proportion ellipses irreducible numbers area polynomials cards crossnumber products averages colouring angles differentiation folding tube maps trigonometry dominos 2d shapes regular shapes coins tournaments polygons lines books consecutive integers surds multiples algebra ave balancing even numbers perfect numbers grids odd numbers cubics sets numbers palindromes division square numbers advent shapes fractions perimeter functions shape routes probabilty percentages indices sum to infinity pentagons cryptic crossnumbers crossnumbers the only crossnumber complex numbers determinants dates triangles tangents bases tiling combinatorics cube numbers taxicab geometry star numbers decahedra neighbours mean expansions sport prime numbers parabolas range scales median quadrilaterals money digital clocks people maths factors 3d shapes calculus spheres floors triangle numbers christmas chocolate numbers grids square grids remainders logic powers time crosswords geometric means geometry arrows digits gerrymandering partitions chalkdust crossnumber square roots factorials quadratics axes coordinates menace elections medians clocks dice geometric mean symmetry chess multiplication matrices

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025