Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


time area remainders multiplication rugby percentages surds planes prime numbers dominos palindromes range digital clocks perimeter cube numbers averages scales sport square numbers partitions functions symmetry lines speed arrows the only crossnumber colouring routes chalkdust crossnumber 2d shapes addition regular shapes integration games products geometry ave ellipses 3d shapes dates crosswords people maths squares sequences algebra gerrymandering probability number factors angles circles division unit fractions elections bases menace cryptic clues cards integers crossnumber perfect numbers indices coins advent books clocks doubling spheres sums graphs wordplay chess polygons means dice multiples hexagons factorials money grids probabilty triangles median square roots crossnumbers digits christmas proportion trigonometry irreducible numbers taxicab geometry complex numbers fractions triangle numbers dodecagons coordinates quadratics cryptic crossnumbers chocolate floors shape odd numbers star numbers parabolas shapes mean folding tube maps pascal's triangle differentiation tiling calculus balancing logic volume numbers sum to infinity rectangles


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020