Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


polygons ave volume folding tube maps ellipses planes wordplay routes indices cryptic clues odd numbers star numbers digital clocks integers squares regular shapes remainders partitions rectangles symmetry chess dominos median elections hexagons quadratics bases doubling sequences dice trigonometry square roots 2d shapes crossnumber triangle numbers colouring cube numbers digits complex numbers calculus integration area proportion addition cards circles number money shape chocolate sum to infinity triangles sport sums means cryptic crossnumbers crosswords perfect numbers scales gerrymandering spheres pascal's triangle logic differentiation chalkdust crossnumber graphs menace palindromes percentages irreducible numbers coins clocks division 3d shapes mean multiples books factors tiling dates algebra grids probability time averages perimeter products surds angles fractions factorials crossnumbers rugby people maths shapes the only crossnumber square numbers numbers geometry multiplication taxicab geometry arrows probabilty parabolas speed floors advent games functions balancing lines coordinates prime numbers unit fractions dodecagons christmas range


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020