mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

functions mean expansions complex numbers ave angles consecutive integers doubling integration algebra tangents matrices gerrymandering indices digital products chess geometric mean division consecutive numbers arrows averages probability logic spheres 2d shapes numbers symmetry factorials grids irreducible numbers triangle numbers colouring wordplay cards balancing perimeter christmas planes area means range shape tiling fractions factors calculus partitions squares rectangles cubics square roots dodecagons median time rugby routes quadratics elections polygons dates surds ellipses taxicab geometry 3d shapes percentages axes pentagons hexagons sets sequences sport sums graphs prime numbers games sum to infinity addition people maths speed unit fractions binary triangles cryptic crossnumbers polynomials crossnumber palindromes number integers quadrilaterals regular shapes geometric means cryptic clues advent digital clocks digits parabolas chalkdust crossnumber shapes dice odd numbers pascal's triangle multiples menace tournaments star numbers trigonometry coordinates floors books coins decahedra crosswords perfect numbers combinatorics folding tube maps proportion money geometry albgebra probabilty the only crossnumber cube numbers crossnumbers circles determinants volume products clocks square numbers chocolate lines differentiation dominos bases even numbers remainders scales multiplication

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024