Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension


Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles


floors numbers routes unit fractions cryptic clues speed lines circles arrows remainders hexagons multiples cards indices ellipses square numbers coordinates menace complex numbers odd numbers planes functions rugby coins square roots 2d shapes parabolas bases factors 3d shapes dice colouring angles trigonometry sport scales grids sums calculus ave integration digits sequences symmetry differentiation proportion quadratics geometry crossnumbers multiplication averages perimeter dates factorials graphs games wordplay folding tube maps division addition shape clocks mean probability pascal's triangle volume prime numbers cryptic crossnumbers number shapes doubling time triangles people maths integers chalkdust crossnumber percentages surds means christmas crosswords dodecagons fractions rectangles algebra chocolate chess triangle numbers regular shapes area taxicab geometry perfect numbers logic spheres polygons cube numbers irreducible numbers balancing books money sum to infinity probabilty squares advent star numbers partitions palindromes


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2019