mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

geometric means factorials integration pascal's triangle number doubling rectangles prime numbers time ave lines taxicab geometry multiples money sequences cryptic crossnumbers digital products digits axes crossnumbers advent dominos sets coordinates products numbers grids triangle numbers 3d shapes elections people maths the only crossnumber geometric mean factors expansions balancing arrows scales probabilty consecutive integers powers matrices menace partitions regular shapes ellipses bases averages rugby triangles square grids polygons numbers consecutive numbers perfect numbers functions square numbers neighbours combinatorics planes multiplication percentages chocolate games christmas even numbers trigonometry algebra folding tube maps unit fractions remainders complex numbers medians wordplay sport geometry sums star numbers hexagons angles colouring palindromes circles 2d shapes addition sum to infinity polynomials graphs speed books mean probability area decahedra division dates cubics quadrilaterals dice indices crossnumber range albgebra square roots routes grids irreducible numbers shapes coins pentagons cards spheres odd numbers tiling cryptic clues proportion perimeter gerrymandering symmetry cube numbers floors median differentiation squares logic chalkdust crossnumber quadratics binary shape volume fractions dodecagons tangents determinants means parabolas crosswords integers calculus surds digital clocks clocks tournaments chess

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025