mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

crosswords digital products menace axes square numbers people maths coordinates means shape cube numbers lines cards regular shapes taxicab geometry number median rugby digital clocks doubling colouring consecutive numbers consecutive integers shapes perimeter folding tube maps indices factorials rectangles arrows albgebra sport speed geometric mean integration range parabolas 3d shapes quadratics symmetry trigonometry functions sequences pascal's triangle products combinatorics floors games 2d shapes star numbers decahedra clocks percentages quadrilaterals probability spheres remainders crossnumbers scales mean ellipses christmas prime numbers binary division surds dominos sets grids averages determinants probabilty triangle numbers volume money wordplay polygons expansions numbers calculus fractions coins logic routes geometric means cryptic clues hexagons unit fractions odd numbers sums matrices irreducible numbers dodecagons tournaments tangents chocolate partitions pentagons elections bases complex numbers advent cryptic crossnumbers crossnumber triangles addition palindromes area even numbers differentiation planes angles tiling multiplication proportion graphs factors dates chess algebra geometry perfect numbers time ave chalkdust crossnumber balancing polynomials books gerrymandering squares cubics multiples digits dice square roots circles the only crossnumber integers sum to infinity

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024