mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2024

25 December

It's nearly Christmas and something terrible has happened: there's been a major malfunction in multiple machines in Santa's toy factory, and not enough presents have been made. Santa has a backup warehouse full of wrapped presents that can be used in the case of severe emergency, but the warehouse is locked. You need to help Santa work out the code to unlock the warehouse so that he can deliver the presents before Christmas is ruined for everyone.
The information needed to work out the code to the warehouse is known by Santa and his three most trusted elves: Santa is remembering a three-digit number, and each elf is remembering a one-digit and a three-digit number. If Santa and the elves all agree that the emergency warehouse should be opened, they can work out the code for the door as follows:
But this year, there is a complication: the three elves are on a diplomatic mission to Mars to visit Martian Santa and cannot be contacted, so you need to piece together their numbers from the clues they have left behind:
You can to open the door here.

Show answer

24 December

There are 343 three-digit numbers whose digits are all 1, 2, 3, 4, 5, 6, or 7. What is the mean of all these numbers?

Show answer

23 December

In a grid of squares, each square is friendly with itself and friendly with every square that is horizontally, vertically, or diagonally adjacent to it (and is not friendly with any other squares). In a 5×5 grid, it is possible to colour 8 squares so that every square is friendly with at least two coloured squares:
It it not possible to do this by colouring fewer than 8 squares.
What is the fewest number of squares that need to be coloured in a 23×23 grid so that every square is friendly with at least two coloured squares?

Show answer

22 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number that can be formed using the three digits in the red boxes.
+÷= 3
× ×
+= 6
××= 16
=
1
=
13
=
16

Show answer

Tags: numbers, grids

21 December

Noel wants to write a different non-zero digit in each of the five boxes below so that the products of the digits of the three-digit numbers reading across and down are the same.
What is the smallest three-digit number that Noel could write in the boxes going across?

Show answer

20 December

p(x) is a polynomial with integer coefficients such that:
What is p(23)?

Show answer

19 December

There are 9 integers below 100 whose digits are all non-zero and add up to 9: 9, 18, 27, 36, 45, 54, 63, 72, and 81.
How many positive integers are there whose digits are all non-zero and add up to 9?

Show answer & extension

18 December

If k = 21, then 28k ÷ (28 + k) is an integer.
What is the largest integer k such that 28k ÷ (28 + k) is an integer?

Show answer

17 December

The number 40 has 8 factors: 1, 2, 4, 5, 8, 10, 20, and 40.
How many factors does the number 226×5×75×112 have?

Show answer

16 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
×+= 46
÷ + +
+÷= 1
÷ × ×
÷= 1
=
1
=
12
=
45

Show answer

Tags: number, grids

15 December

The number 2268 is equal to the product of a square number (whose last digit is not 0) and the same square number with its digits reversed: 36×63.
What is the smallest three-digit number that is equal to the product of a square number (whose last digit is not 0) and the same square number with its digits reversed?

Show answer

14 December

153 is 3375. The last 3 digits of 153 are 375.
What are the last 3 digits of 151234567890?

Show answer

13 December

Today's number is given in this crossnumber. No number in the completed grid starts with 0.

Show answer

12 December

Holly picks a three-digit number. She then makes a two-digit number by removing one of the digits. The sum of her two numbers is 309. What was Holly's original three-digit number?

Show answer

11 December

There are 6 sets of integers between 1 and 5 (inclusive) that contain an odd number of numbers whose median value is 3:
How many sets of integers between 1 and 11 (inclusive) are there that contain an odd number of numbers whose median value is 5?

Show answer

Tags: sets, medians

10 December

A number is a palindrome if it's the same when its digits are written in reverse order.
What is the sum of all the numbers between 10 and 100 that are palindromes?

Show answer

9 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
+= 8
÷ ÷
+×= 9
× ÷ ÷
÷×= 9
=
12
=
1
=
3

Show answer

8 December

It is possible to arrange 4 points on a plane and draw non-intersecting lines between them to form 3 non-overlapping triangles:
It is not possible to make more than 3 triangles with 4 points.
What is the maximum number of non-overlapping triangles that can be made by arranging 290 points on a plane and drawing non-intersecting lines between them?

Show answer

7 December

What is the obtuse angle in degrees between the minute and hour hands of a clock at 08:22?

Show answer

Tags: angles, clocks

6 December

The number n has 55 digits. All of its digits are 9. What is the sum of the digits of n3?

Show answer

5 December

The sum of 11 consecutive integers is 2024. What is the smallest of the 11 integers?

Show answer

Tags: numbers, sums

4 December

The geometric mean of a set of n numbers is computed by mulitplying all the numbers together, then taking the nth root.
The factors of 9 are 1, 3, and 9. The geometric mean of these factors is
$$\sqrt[3]{1\times3\times9}=\sqrt[3]{27}=3$$
What is the smallest number where the geometric mean of its factors is 13?

Show answer

3 December

There are 5 ways to write 5 as the sum of positive odd numbers:
How many ways are there to write 14 as the sum of positive odd numbers?

Show answer

Tags: numbers, sums

2 December

14 is the smallest even number that cannot be obtained by rolling two 6-sided dice and finding the product of the numbers rolled.
What is the smallest even number that cannot be obtained by rolling one hundred 100-sided dice and finding the product of the numbers rolled?

Show answer

Tags: dice

1 December

Eve writes down five different positive integers. The sum of her integers is 16. What is the product of her integers?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

averages irreducible numbers scales palindromes floors tangents determinants cryptic clues crossnumbers coordinates quadratics square numbers medians trigonometry perimeter 2d shapes advent cube numbers probability triangles addition proportion unit fractions square grids crosswords differentiation regular shapes geometry ave consecutive numbers rugby dates calculus neighbours factors wordplay sum to infinity balancing volume pentagons sets arrows powers spheres means digital clocks area time lines doubling range quadrilaterals star numbers prime numbers odd numbers geometric means squares numbers functions dodecagons percentages geometric mean colouring grids binary graphs the only crossnumber pascal's triangle bases consecutive integers shape logic elections routes chocolate partitions number christmas menace triangle numbers combinatorics tournaments factorials expansions integers square roots chalkdust crossnumber digits remainders polynomials games matrices parabolas dice surds division coins rectangles multiples circles chess speed mean axes planes fractions algebra polygons tiling shapes multiplication symmetry sport decahedra digital products sequences ellipses people maths sums 3d shapes even numbers perfect numbers integration complex numbers gerrymandering cubics cryptic crossnumbers probabilty cards median taxicab geometry angles crossnumber folding tube maps books products hexagons dominos clocks numbers grids money indices albgebra

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025