mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

24 December

When written in binary, the number 235 is 11101011. This binary representation starts and ends with 1 and does not contain two 0s in a row.
What is the smallest three-digit number whose binary representation starts and ends with 1 and does not contain two 0s in a row?

Show answer

8 December

The residents of Octingham have 8 fingers. Instead of counting in base ten, they count in base eight: the digits of their numbers represent ones, eights, sixty-fours, two-hundred-and-fifty-sixes, etc instead of ones, tens, hundreds, thousands, etc.
For example, a residents of Octingham would say 12, 22 and 52 instead of our usual numbers 10, 18 and 42.
Today's number is what a resident of Octingham would call 11 squared (where the 11 is also written using the Octingham number system).

Show answer

22 December

In bases 3 to 9, the number 112 is: \(11011_3\), \(1300_4\), \(422_5\), \(304_6\), \(220_7\), \(160_8\), and \(134_9\). In bases 3, 4, 6, 8 and 9, these representations contain no digit 2.
There are two 3-digit numbers that contain no 2 in their representations in all the bases between 3 and 9 (inclusive). Today's number is the smaller of these two numbers.

Show answer

22 December

In base 2, 1/24 is 0.0000101010101010101010101010...
In base 3, 1/24 is 0.0010101010101010101010101010...
In base 4, 1/24 is 0.0022222222222222222222222222...
In base 5, 1/24 is 0.0101010101010101010101010101...
In base 6, 1/24 is 0.013.
Therefore base 6 is the lowest base in which 1/24 has a finite number of digits.
Today's number is the smallest base in which 1/10890 has a finite number of digits.
Note: 1/24 always represents 1 divided by twenty-four (ie the 24 is written in decimal).

Show answer

121

Find a number base other than 10 in which 121 is a perfect square.

Show answer & extension

Tags: numbers, bases

Adding bases

Let \(a_b\) denote \(a\) in base \(b\).
Find bases \(A\), \(B\) and \(C\) less than 10 such that \(12_A+34_B=56_C\).

Show answer & extension

Tags: numbers, bases

Reverse bases again

Find three digits \(a\), \(b\) and \(c\) such that \(abc\) in base 10 is equal to \(cba\) in base 9?

Show answer & extension

Tags: numbers, bases

Reverse bases

Find two digits \(a\) and \(b\) such that \(ab\) in base 10 is equal to \(ba\) in base 4.
Find two digits \(c\) and \(d\) such that \(cd\) in base 10 is equal to \(dc\) in base 7.
Find two digits \(e\) and \(f\) such that \(ef\) in base 9 is equal to \(fe\) in base 5.

Show answer & extension

Tags: numbers, bases

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

probabilty range proportion cryptic crossnumbers clocks volume combinatorics palindromes polygons percentages multiplication cards integration graphs calculus sport prime numbers multiples chess dodecagons division star numbers arrows area crosswords decahedra perimeter parabolas axes binary albgebra 3d shapes logic trigonometry determinants sequences square numbers scales chalkdust crossnumber gerrymandering geometric means dice lines colouring elections matrices sets folding tube maps money digits sums rugby median shape algebra angles advent tangents routes dominos functions speed consecutive numbers fractions partitions pascal's triangle quadrilaterals surds menace expansions chocolate rectangles tiling factors pentagons circles cubics christmas averages digital clocks coins addition cryptic clues books probability integers people maths unit fractions squares the only crossnumber quadratics perfect numbers wordplay crossnumbers grids ellipses taxicab geometry geometric mean numbers number consecutive integers remainders polynomials bases factorials dates ave cube numbers complex numbers shapes geometry means triangle numbers irreducible numbers triangles products doubling symmetry regular shapes spheres square roots games indices time floors coordinates balancing planes odd numbers digital products sum to infinity 2d shapes tournaments differentiation crossnumber mean even numbers hexagons

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024