mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

24 December

When written in binary, the number 235 is 11101011. This binary representation starts and ends with 1 and does not contain two 0s in a row.
What is the smallest three-digit number whose binary representation starts and ends with 1 and does not contain two 0s in a row?

Show answer

8 December

The residents of Octingham have 8 fingers. Instead of counting in base ten, they count in base eight: the digits of their numbers represent ones, eights, sixty-fours, two-hundred-and-fifty-sixes, etc instead of ones, tens, hundreds, thousands, etc.
For example, a residents of Octingham would say 12, 22 and 52 instead of our usual numbers 10, 18 and 42.
Today's number is what a resident of Octingham would call 11 squared (where the 11 is also written using the Octingham number system).

Show answer

22 December

In bases 3 to 9, the number 112 is: \(11011_3\), \(1300_4\), \(422_5\), \(304_6\), \(220_7\), \(160_8\), and \(134_9\). In bases 3, 4, 6, 8 and 9, these representations contain no digit 2.
There are two 3-digit numbers that contain no 2 in their representations in all the bases between 3 and 9 (inclusive). Today's number is the smaller of these two numbers.

Show answer

22 December

In base 2, 1/24 is 0.0000101010101010101010101010...
In base 3, 1/24 is 0.0010101010101010101010101010...
In base 4, 1/24 is 0.0022222222222222222222222222...
In base 5, 1/24 is 0.0101010101010101010101010101...
In base 6, 1/24 is 0.013.
Therefore base 6 is the lowest base in which 1/24 has a finite number of digits.
Today's number is the smallest base in which 1/10890 has a finite number of digits.
Note: 1/24 always represents 1 divided by twenty-four (ie the 24 is written in decimal).

Show answer

121

Find a number base other than 10 in which 121 is a perfect square.

Show answer & extension

Tags: numbers, bases

Adding bases

Let \(a_b\) denote \(a\) in base \(b\).
Find bases \(A\), \(B\) and \(C\) less than 10 such that \(12_A+34_B=56_C\).

Show answer & extension

Tags: numbers, bases

Reverse bases again

Find three digits \(a\), \(b\) and \(c\) such that \(abc\) in base 10 is equal to \(cba\) in base 9?

Show answer & extension

Tags: numbers, bases

Reverse bases

Find two digits \(a\) and \(b\) such that \(ab\) in base 10 is equal to \(ba\) in base 4.
Find two digits \(c\) and \(d\) such that \(cd\) in base 10 is equal to \(dc\) in base 7.
Find two digits \(e\) and \(f\) such that \(ef\) in base 9 is equal to \(fe\) in base 5.

Show answer & extension

Tags: numbers, bases

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

circles complex numbers multiplication grids cube numbers binary tournaments axes numbers dice palindromes coins chess games matrices sums the only crossnumber graphs consecutive integers 2d shapes surds cryptic clues bases probabilty multiples star numbers functions volume trigonometry arrows spheres division crosswords balancing parabolas menace chocolate polygons doubling digital products even numbers time floors products hexagons geometric means angles planes perfect numbers decahedra polynomials sport area partitions triangle numbers integration factors odd numbers lines shapes algebra remainders irreducible numbers folding tube maps speed addition chalkdust crossnumber combinatorics regular shapes cards books digits advent squares percentages dodecagons sum to infinity mean means geometric mean elections cubics ellipses determinants differentiation consecutive numbers prime numbers geometry expansions rugby crossnumbers range scales number unit fractions crossnumber median tangents logic symmetry probability tiling wordplay gerrymandering money pascal's triangle albgebra quadratics perimeter indices dominos coordinates factorials quadrilaterals colouring sequences fractions routes pentagons clocks square roots averages square numbers people maths triangles proportion cryptic crossnumbers 3d shapes integers dates rectangles digital clocks ave taxicab geometry christmas calculus shape sets

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024