mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

19 December

The diagram below shows three squares and five circles. The four smaller circles are all the same size, and the red square's vertices are the centres of these circles.
The area of the blue square is 14 units. What is the area of the red square?

Show answer

Is it equilateral?

In the diagram below, \(ABDC\) is a square. Angles \(ACE\) and \(BDE\) are both 75°.
Is triangle \(ABE\) equilateral? Why/why not?

Show answer

16 December

There are 204 squares (of any size) in an 8×8 grid of squares. Today's number is the number of rectangles (of any size) in a 2×19 grid of squares

14 December

There are 204 squares (of any size) in an 8×8 grid of squares. Today's number is the number of squares in a 13×13 grid of squares

Squared circle

Each side of a square has a circle drawn on it as diameter. The square is also inscribed in a fifth circle as shown.
Find the ratio of the total area of the shaded crescents to the area of the square.

Show answer

Square deal

This unit square is divided into four regions by a diagonal and a line that connects a vertex to the midpoint of an opposite side. What are the areas of the four regions?

Show answer & extension

Light work

"I don't know if you are fond of puzzles, or not. If you are, try this. ... A gentleman (a nobleman let us say, to make it more interesting) had a sitting-room with only one window in it—a square window, 3 feet high and 3 feet wide. Now he had weak eyes, and the window gave too much light, so (don't you like 'so' in a story?) he sent for the builder, and told him to alter it, so as only to give half the light. Only, he was to keep it square—he was to keep it 3 feet high—and he was to keep it 3 feet wide. How did he do it? Remember, he wasn't allowed to use curtains, or shutters, or coloured glass, or anything of that sort."

Show answer & extension

Chessboard squares

It was once claimed that there are 204 squares on a chessboard. Can you justify this claim?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

coordinates graphs the only crossnumber floors circles crossnumber sums probability grids wordplay cryptic crossnumbers perimeter colouring regular shapes odd numbers remainders averages spheres star numbers quadratics triangle numbers doubling dodecagons speed crossnumbers routes symmetry planes differentiation 2d shapes median money prime numbers number square roots unit fractions geometry multiplication lines books proportion calculus factors chalkdust crossnumber fractions ave menace mean hexagons chocolate triangles percentages tiling parabolas dice palindromes chess algebra probabilty shapes cards sport advent games cryptic clues range surds irreducible numbers 3d shapes crosswords dominos gerrymandering numbers ellipses factorials logic trigonometry elections dates coins arrows digits rectangles taxicab geometry polygons products integers sum to infinity integration squares area sequences division multiples means pascal's triangle digital clocks addition partitions volume scales people maths shape rugby folding tube maps clocks complex numbers angles time indices balancing functions christmas square numbers perfect numbers cube numbers bases

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020