mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?

Between quadratics

Source: Luciano Rila (@DrTrapezio)
\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),
$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

Show answer

Balanced sets

A set of points in the plane is called 'balanced' if for any two points \(A\) and \(B\) in the set, there is another point \(C\) in the set such that \(AC=BC\) (here \(AC\) is the distance between \(A\) and \(C\)).
For all \(n\geq3\), find a balanced set of \(n\) points.

Show answer

Bézier curve

A Bézier curve is created as follows:
1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).
2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).
3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).
.
.
.
\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:
$$P_0=\left(0,1\right)$$ $$P_1=\left(0,0\right)$$ $$P_2=\left(1,0\right)$$

Show answer & extension

Parabola

On a graph of \(y=x^2\), two lines are drawn at \(x=a\) and \(x=-b\) (for \(a,b>0\). The points where these lines intersect the parabola are connected.
What is the y-coordinate of the point where this line intersects the y-axis?

Show answer & extension

Two lines

Let A and B be two straight lines such that the gradient of A is the y-intercept of B and the y-intercept of A is the gradient of B (the gradient and y-intercept of A are not the same). What are the co-ordinates of the point where the lines meet?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles

Tags

perimeter probabilty division shapes crossnumbers folding tube maps area number circles advent symmetry square roots ellipses grids coordinates books pascal's triangle doubling hexagons dates ave 3d shapes rectangles rugby polygons games irreducible numbers triangle numbers indices factorials scales means factors money cryptic clues trigonometry digits calculus balancing unit fractions algebra crosswords chess perfect numbers numbers integration chalkdust crossnumber arrows parabolas complex numbers quadratics chocolate clocks geometry multiplication taxicab geometry shape time logic partitions triangles palindromes lines volume colouring surds menace multiples differentiation integers addition sums angles proportion mean odd numbers bases graphs christmas prime numbers dodecagons spheres squares sum to infinity averages cryptic crossnumbers speed coins floors fractions sequences routes regular shapes percentages star numbers people maths probability cube numbers wordplay sport square numbers 2d shapes remainders dice cards planes functions

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2019