mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Advent calendar 2023

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

combinatorics hexagons menace sum to infinity calculus floors shape balancing multiples pentagons division irreducible numbers odd numbers clocks dodecagons multiplication factorials pascal's triangle games sums probabilty proportion dominos circles angles logic bases polygons quadratics 3d shapes squares christmas triangle numbers integers cards crosswords albgebra perimeter taxicab geometry crossnumber geometric mean mean trigonometry sets triangles probability area integration parabolas star numbers rectangles addition consecutive integers crossnumbers dates routes determinants people maths range time speed gerrymandering graphs coordinates remainders polynomials functions ellipses elections money factors chalkdust crossnumber chess digital clocks wordplay shapes colouring geometry prime numbers fractions cryptic crossnumbers cube numbers advent books palindromes arrows doubling percentages digital products coins planes sport products rugby the only crossnumber spheres averages scales median square roots folding tube maps number tournaments consecutive numbers grids algebra lines unit fractions volume tangents partitions binary square numbers sequences surds dice expansions chocolate 2d shapes numbers cryptic clues quadrilaterals decahedra means geometric means perfect numbers even numbers regular shapes tiling axes differentiation cubics symmetry digits ave indices matrices complex numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024