mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

24 December

There are six 3-digit numbers with the property that the sum of their digits is equal to the product of their digits. Today's number is the largest of these numbers.

Show answer

6 December

Noel's grandchildren were in born in November in consecutive years. Each year for Christmas, Noel gives each of his grandchildren their age in pounds.
Last year, Noel gave his grandchildren a total of £208. How much will he give them in total this year?

Show answer

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Square pairs

Source: Maths Jam
Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?
For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

Show answer

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

Combining multiples

In each of these questions, positive integers should be taken to include 0.
1. What is the largest number that cannot be written in the form \(3a+5b\), where \(a\) and \(b\) are positive integers?
2. What is the largest number that cannot be written in the form \(3a+7b\), where \(a\) and \(b\) are positive integers?
3. What is the largest number that cannot be written in the form \(10a+11b\), where \(a\) and \(b\) are positive integers?
4. Given \(n\) and \(m\), what is the largest number that cannot be written in the form \(na+mb\), where \(a\) and \(b\) are positive integers?

Show answer & extension

Subsum

1) In a set of three integers, will there always be two integers whose sum is even?
2) How many integers must there be in a set so that there will always be three integers in the set whose sum is a multiple of 3?
3) How many integers must there be in a set so that there will always be four integers in the set whose sum is even?
4) How many integers must there be in a set so that there will always be three integers in the set whose sum is even?

Show answer & extension

Santa

Each of the letters D, A, Y, S, N, T, B, R and E represents a different non-zero digit. The following sum is true:
$$ \begin{array}{cccccc} D&A&D&D&Y\\ B&E&A&R&D&+\\ \hline S&A&N&T&A \end{array} $$
This has a unique solution, but I haven't found a way to find the solution without brute force. This less insightful sum is also true with the same values of the letters (and should allow you to find the values of the letters using logic alone):
$$ \begin{array}{ccccc} R&A&T&S\\ N&E&R&D&+\\ \hline S&A&N&E \end{array} $$

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

coordinates christmas sport spheres routes cryptic crossnumbers rugby star numbers chalkdust crossnumber books speed odd numbers partitions prime numbers median probability averages division volume factors menace multiples digital clocks taxicab geometry crossnumber clocks differentiation circles 2d shapes people maths bases unit fractions graphs scales ave square roots number cube numbers coins complex numbers folding tube maps trigonometry angles cryptic clues factorials dates grids doubling planes elections fractions dominos calculus perimeter probabilty sum to infinity chocolate rectangles digits integers the only crossnumber sequences square numbers advent 3d shapes dice wordplay parabolas polygons triangles arrows symmetry floors integration tiling remainders triangle numbers means dodecagons geometry numbers cards regular shapes logic crosswords shape proportion range products gerrymandering shapes colouring crossnumbers sums indices multiplication lines chess surds percentages hexagons money mean functions irreducible numbers pascal's triangle palindromes area time ellipses games quadratics balancing squares perfect numbers addition algebra

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020