mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

16 December

Some numbers can be written as the sum of two or more consecutive positive integers, for example:
$$7=3+4$$ $$18=5+6+7$$
Some numbers (for example 4) cannot be written as the sum of two or more consecutive positive integers. What is the smallest three-digit number that cannot be written as the sum of two or more consecutive positive integers?

Show answer & extension

2 December

Holly adds up the first six even numbers, then adds on half of the next even number. Her total is 49.
Next, Holly adds up the first \(n\) even numbers then adds on half of the next even number. This time, her total is 465124. What is \(n\)?

Show answer & extension

9 December

Eve writes down a sequence of consecutive positive integers (she writes more than one number). The sum of the numbers Eve has written down is 844.
Today's number is the smallest integer that Eve has written down.

Show answer

8 December

The sum of three integers is 51. The product of the same three integers is 836. What is the product of largest integer and the second-largest integer?

Show answer

20 December

18 can be written as the sum of 3 consecutive (strictly) positive integers: 5 + 6 + 7.
18 can also be written as the sum of 4 consecutive (strictly) positive integers: 3 + 4 + 5 + 6.
18 is in fact the smallest number that can be written as the sum of both 3 and 4 consecutive (strictly) positive integers.
Today's number is the smallest number that can be written as the sum of both 12 and 13 consecutive (strictly) positive integers.

Show answer

Tags: numbers, sums

24 December

There are six 3-digit numbers with the property that the sum of their digits is equal to the product of their digits. Today's number is the largest of these numbers.

Show answer

6 December

Noel's grandchildren were in born in November in consecutive years. Each year for Christmas, Noel gives each of his grandchildren their age in pounds.
Last year, Noel gave his grandchildren a total of £208. How much will he give them in total this year?

Show answer

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

perimeter odd numbers mean square numbers remainders probability hexagons fractions symmetry grids routes menace quadratics integers squares factorials determinants geometric means averages cube numbers rectangles dodecagons coordinates expansions circles trigonometry people maths axes prime numbers triangles scales number geometric mean dominos chess cryptic crossnumbers pentagons binary dates algebra multiples polynomials matrices cards balancing irreducible numbers proportion christmas square roots dice shape gerrymandering functions cryptic clues quadrilaterals 3d shapes palindromes planes indices consecutive integers floors ellipses crosswords crossnumbers regular shapes elections spheres parabolas surds graphs integration median digits sets volume albgebra probabilty percentages the only crossnumber factors money means geometry consecutive numbers star numbers tangents logic chalkdust crossnumber colouring calculus products taxicab geometry sums doubling rugby time clocks angles sum to infinity ave decahedra folding tube maps unit fractions chocolate sport crossnumber tiling advent numbers cubics wordplay digital products sequences combinatorics addition books polygons triangle numbers coins range digital clocks partitions lines tournaments area shapes 2d shapes multiplication differentiation pascal's triangle speed games even numbers perfect numbers arrows complex numbers bases division

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024