mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Square pairs

Source: Maths Jam
Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?
For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

Show answer

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

Combining multiples

In each of these questions, positive integers should be taken to include 0.
1. What is the largest number that cannot be written in the form \(3a+5b\), where \(a\) and \(b\) are positive integers?
2. What is the largest number that cannot be written in the form \(3a+7b\), where \(a\) and \(b\) are positive integers?
3. What is the largest number that cannot be written in the form \(10a+11b\), where \(a\) and \(b\) are positive integers?
4. Given \(n\) and \(m\), what is the largest number that cannot be written in the form \(na+mb\), where \(a\) and \(b\) are positive integers?

Show answer & extension

Subsum

1) In a set of three integers, will there always be two integers whose sum is even?
2) How many integers must there be in a set so that there will always be three integers in the set whose sum is a multiple of 3?
3) How many integers must there be in a set so that there will always be four integers in the set whose sum is even?
4) How many integers must there be in a set so that there will always be three integers in the set whose sum is even?

Show answer & extension

Santa

Each of the letters D, A, Y, S, N, T, B, R and E represents a different non-zero digit. The following sum is true:
$$ \begin{array}{cccccc} D&A&D&D&Y\\ B&E&A&R&D&+\\ \hline S&A&N&T&A \end{array} $$
This has a unique solution, but I haven't found a way to find the solution without brute force. This less insightful sum is also true with the same values of the letters (and should allow you to find the values of the letters using logic alone):
$$ \begin{array}{ccccc} R&A&T&S\\ N&E&R&D&+\\ \hline S&A&N&E \end{array} $$

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles

Tags

probability chess squares speed multiples surds books digits time doubling palindromes games spheres square roots integers floors calculus polygons symmetry shapes functions hexagons sequences means sport addition chalkdust crossnumber cryptic clues crossnumbers remainders mean logic area sums regular shapes sum to infinity 2d shapes numbers bases angles trigonometry probabilty planes irreducible numbers rectangles wordplay factors balancing integration averages cards parabolas indices perimeter prime numbers dodecagons crosswords proportion complex numbers algebra rugby chocolate ellipses coordinates grids dice geometry unit fractions routes triangles taxicab geometry division volume people maths money percentages colouring graphs multiplication square numbers shape pascal's triangle ave perfect numbers fractions clocks christmas 3d shapes number menace cryptic crossnumbers star numbers circles coins differentiation lines advent quadratics arrows cube numbers dates factorials partitions folding tube maps scales odd numbers triangle numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2019