mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2020

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

the only crossnumber sums grids geometric means regular shapes means cryptic clues elections planes angles albgebra advent sets multiplication prime numbers square roots surds money 2d shapes indices neighbours folding tube maps floors sum to infinity cubics quadratics range dodecagons ellipses tournaments balancing powers logic median time hexagons remainders percentages calculus volume consecutive numbers cube numbers decahedra lines parabolas pentagons square grids dominos integers triangle numbers probabilty chalkdust crossnumber digital products products combinatorics palindromes number cryptic crossnumbers fractions factors complex numbers integration bases mean rectangles determinants symmetry crosswords books pascal's triangle tiling square numbers proportion clocks unit fractions arrows colouring factorials axes routes perfect numbers probability binary digital clocks coordinates algebra quadrilaterals gerrymandering medians rugby wordplay 3d shapes matrices consecutive integers division multiples partitions tangents triangles dice crossnumbers numbers odd numbers star numbers squares sequences functions polygons polynomials doubling taxicab geometry perimeter scales addition speed chess shape digits numbers grids spheres area graphs differentiation people maths coins averages geometric mean irreducible numbers geometry sport ave shapes menace even numbers dates games christmas circles chocolate cards expansions trigonometry

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025