mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2020

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

sequences integers mean addition algebra coins floors colouring median symmetry chess square roots unit fractions matrices rugby planes clocks decahedra odd numbers geometric mean star numbers routes consecutive integers triangles quadratics percentages dice lines ave folding tube maps albgebra numbers squares polygons parabolas gerrymandering sport pentagons logic fractions books crossnumbers integration averages number crossnumber chalkdust crossnumber money combinatorics digital products consecutive numbers products angles rectangles dodecagons geometric means games palindromes elections partitions digits cards cube numbers shape range sum to infinity prime numbers hexagons triangle numbers people maths circles scales time the only crossnumber determinants square numbers dominos complex numbers spheres menace taxicab geometry shapes tiling ellipses indices crosswords tournaments probabilty functions grids cryptic clues remainders cryptic crossnumbers cubics digital clocks expansions geometry probability even numbers perimeter speed bases dates regular shapes sets proportion factors division binary tangents multiples axes multiplication wordplay surds means polynomials irreducible numbers chocolate 2d shapes arrows pascal's triangle factorials calculus volume graphs area doubling christmas coordinates trigonometry 3d shapes quadrilaterals sums perfect numbers differentiation advent balancing

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024