mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2020

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

pentagons grids wordplay angles chalkdust crossnumber coordinates ave decahedra tangents bases digits quadratics percentages symmetry surds number spheres money planes folding tube maps shapes probability dates products quadrilaterals division polygons axes hexagons logic sequences irreducible numbers triangle numbers 2d shapes combinatorics crossnumbers perfect numbers volume circles consecutive integers cube numbers proportion neighbours lines odd numbers rugby indices cryptic crossnumbers differentiation chocolate perimeter partitions calculus unit fractions consecutive numbers numbers sport expansions geometry time polynomials people maths geometric mean graphs digital clocks balancing powers means square numbers regular shapes triangles area even numbers square grids scales routes probabilty christmas dice gerrymandering functions digital products integration taxicab geometry determinants factorials averages squares trigonometry pascal's triangle addition cryptic clues remainders factors the only crossnumber sets median speed fractions albgebra menace advent ellipses sums doubling 3d shapes clocks integers binary sum to infinity parabolas coins arrows games cards tiling tournaments crosswords complex numbers medians books elections matrices geometric means star numbers palindromes multiples dodecagons colouring square roots range floors multiplication numbers grids mean algebra prime numbers crossnumber chess cubics rectangles shape dominos

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025