mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2020

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

volume books square roots doubling digital products cryptic crossnumbers expansions tournaments the only crossnumber unit fractions numbers grids surds shape perimeter 3d shapes quadratics spheres rugby functions coins christmas cubics perfect numbers matrices 2d shapes even numbers means logic axes sequences percentages number median time parabolas integers fractions determinants angles digital clocks star numbers crossnumber combinatorics consecutive integers dodecagons triangles symmetry folding tube maps taxicab geometry arrows palindromes lines pascal's triangle menace hexagons wordplay elections balancing albgebra binary geometric mean rectangles range polynomials probabilty cards partitions triangle numbers ellipses addition prime numbers digits crossnumbers trigonometry shapes pentagons polygons algebra integration floors ave neighbours scales chocolate geometric means gerrymandering multiples dates clocks proportion geometry regular shapes games sum to infinity chess averages mean square grids colouring factorials complex numbers cryptic clues cube numbers quadrilaterals crosswords products probability planes odd numbers speed square numbers money factors area bases people maths sums tangents division coordinates dice multiplication sport medians routes dominos numbers powers advent squares irreducible numbers grids chalkdust crossnumber decahedra remainders graphs tiling consecutive numbers calculus sets indices differentiation circles

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025