mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

21 December

There are 6 two-digit numbers whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit:
How many 20-digit numbers are there whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit?

Show answer & extension

15 December

The arithmetic mean of a set of \(n\) numbers is computed by adding up all the numbers, then dividing the result by \(n\). The geometric mean of a set of \(n\) numbers is computed by multiplying all the numbers together, then taking the \(n\)th root of the result.
The arithmetic mean of the digits of the number 132 is \(\tfrac13(1+3+2)=2\). The geometric mean of the digits of the number 139 is \(\sqrt[3]{1\times3\times9}\)=3.
What is the smallest three-digit number whose first digit is 4 and for which the arithmetic and geometric means of its digits are both non-zero integers?

Show answer & extension

10 December

How many integers are there between 100 and 1000 whose digits add up to an even number?

Show answer

3 December

190 is the smallest multiple of 10 whose digits add up to 10.
What is the smallest multiple of 15 whose digits add up to 15?

23 December

How many numbers are there between 100 and 1000 that contain no 0, 1, 2, 3, or 4?

Show answer

11 December

There are five 3-digit numbers whose digits are all either 1 or 2 and who do not contain two 2s in a row: 111, 112, 121, 211, and 212.
How many 14-digit numbers are there whose digits are all either 1 or 2 and who do not contain two 2s in a row?

Show answer

6 December

There are 21 three-digit integers whose digits are all non-zero and whose digits add up to 8.
How many positive integers are there whose digits are all non-zero and whose digits add up to 8?

Show answer & extension

3 December

Write the numbers 1 to 81 in a grid like this:
$$ \begin{array}{cccc} 1&2&3&\cdots&9\\ 10&11&12&\cdots&18\\ 19&20&21&\cdots&27\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 73&74&75&\cdots&81 \end{array} $$
Pick 9 numbers so that you have exactly one number in each row and one number in each column, and find their sum. What is the largest value you can get?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

integration volume christmas quadratics factorials integers speed 3d shapes parabolas regular shapes angles matrices quadrilaterals division arrows rectangles triangles median tangents irreducible numbers planes indices menace games people maths symmetry crosswords books coins decahedra percentages probabilty multiples complex numbers consecutive numbers doubling pentagons squares polynomials clocks axes digital clocks algebra chess dice consecutive integers products cryptic crossnumbers tournaments sequences even numbers wordplay trigonometry expansions square roots functions determinants folding tube maps geometric mean partitions circles multiplication dominos ave sets sums palindromes time the only crossnumber bases elections fractions dodecagons chalkdust crossnumber unit fractions perfect numbers cryptic clues gerrymandering star numbers range triangle numbers floors scales coordinates hexagons 2d shapes rugby crossnumbers cube numbers tiling ellipses geometric means shapes perimeter means money albgebra differentiation averages square numbers geometry sum to infinity binary proportion balancing probability dates calculus pascal's triangle mean routes odd numbers prime numbers surds chocolate number digital products combinatorics polygons advent numbers colouring logic sport spheres shape remainders lines factors taxicab geometry crossnumber addition digits cubics area graphs cards grids

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024