mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

24 December

When written in binary, the number 235 is 11101011. This binary representation starts and ends with 1 and does not contain two 0s in a row.
What is the smallest three-digit number whose binary representation starts and ends with 1 and does not contain two 0s in a row?

Show answer

21 December

There are 6 two-digit numbers whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit:
How many 20-digit numbers are there whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit?

Show answer & extension

19 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
+= 7
× × ×
+= 0
÷ ÷ ÷
+= 2
=
4
=
35
=
18

Show answer

Tags: numbers, grids

18 December

Some numbers can be written as the product of two or more consecutive integers, for example:
$$6=2\times3$$ $$840=4\times5\times6\times7$$
What is the smallest three-digit number that can be written as the product of two or more consecutive integers?

15 December

The arithmetic mean of a set of \(n\) numbers is computed by adding up all the numbers, then dividing the result by \(n\). The geometric mean of a set of \(n\) numbers is computed by multiplying all the numbers together, then taking the \(n\)th root of the result.
The arithmetic mean of the digits of the number 132 is \(\tfrac13(1+3+2)=2\). The geometric mean of the digits of the number 139 is \(\sqrt[3]{1\times3\times9}\)=3.
What is the smallest three-digit number whose first digit is 4 and for which the arithmetic and geometric means of its digits are both non-zero integers?

Show answer & extension

12 December

What is the smallest value of \(n\) such that
$$\frac{500!\times499!\times498!\times\dots\times1!}{n!}$$
is a square number?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ + ÷
+= 10
+ ×
÷×= 3
=
16
=
1
=
30

Show answer

Tags: numbers, grids

10 December

How many integers are there between 100 and 1000 whose digits add up to an even number?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

star numbers numbers gerrymandering parabolas geometric mean crossnumbers square roots crosswords mean remainders addition planes people maths cubics quadrilaterals crossnumber sequences multiples cryptic clues median chess grids balancing ellipses cube numbers decahedra shapes scales volume tangents unit fractions colouring cards irreducible numbers ave averages logic sets division circles symmetry pascal's triangle determinants wordplay trigonometry geometry floors tiling consecutive numbers money doubling integers perimeter books squares rugby triangles taxicab geometry probabilty albgebra coins pentagons digital clocks factorials christmas cryptic crossnumbers polynomials folding tube maps hexagons percentages dates functions square numbers 3d shapes digital products games prime numbers menace fractions dice bases even numbers elections calculus spheres geometric means dominos matrices chalkdust crossnumber expansions clocks indices routes probability triangle numbers integration differentiation chocolate axes dodecagons surds perfect numbers odd numbers advent shape products complex numbers palindromes proportion polygons the only crossnumber quadratics algebra coordinates factors area arrows sport sums combinatorics graphs range consecutive integers number means multiplication angles rectangles partitions digits regular shapes binary lines 2d shapes sum to infinity time speed tournaments

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024