mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2023

17 December

If you expand \((a+b+c)^2\), you get \(a^2+b^2+c^2+2ab+2ac+2bc\). This has 6 terms.
How many terms does the expansion of \((a+b+c+d+e+f)^5\) have?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

consecutive integers square roots digital products books shape shapes median cryptic crossnumbers even numbers the only crossnumber polygons rugby matrices tournaments sets dice proportion sport albgebra triangle numbers hexagons symmetry percentages cards cube numbers range spheres arrows factors dodecagons calculus squares indices time combinatorics binary perfect numbers balancing logic tiling planes quadrilaterals integration algebra elections determinants grids dates consecutive numbers factorials 2d shapes ellipses christmas coins ave wordplay cubics graphs crosswords lines volume parabolas quadratics tangents people maths colouring routes addition geometric means digits sequences angles division 3d shapes geometry chess crossnumbers number sum to infinity odd numbers decahedra numbers prime numbers rectangles axes geometric mean averages floors irreducible numbers palindromes fractions speed pentagons square numbers star numbers sums area coordinates money bases polynomials mean pascal's triangle taxicab geometry clocks cryptic clues digital clocks remainders doubling surds probability complex numbers expansions crossnumber perimeter regular shapes differentiation partitions multiplication chalkdust crossnumber dominos triangles circles unit fractions scales gerrymandering probabilty trigonometry multiples means integers menace products games folding tube maps chocolate advent functions

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024