mscroggs.co.uk
mscroggs.co.uk

subscribe

Advent calendar 2023

17 December

If you expand \((a+b+c)^2\), you get \(a^2+b^2+c^2+2ab+2ac+2bc\). This has 6 terms.
How many terms does the expansion of \((a+b+c+d+e+f)^5\) have?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

averages dice 3d shapes ellipses determinants speed angles calculus median sums scales rectangles addition odd numbers square roots coordinates chocolate means perfect numbers irreducible numbers colouring matrices cryptic crossnumbers prime numbers polygons geometric means shapes money polynomials routes number algebra proportion folding tube maps circles integration perimeter tangents 2d shapes indices consecutive numbers grids regular shapes taxicab geometry planes numbers volume clocks the only crossnumber digital products symmetry digital clocks quadratics cryptic clues complex numbers tiling cards sequences graphs christmas even numbers chalkdust crossnumber arrows shape area pentagons doubling factorials sport coins advent books combinatorics geometry crossnumber crosswords ave dominos consecutive integers squares crossnumbers functions partitions bases spheres floors expansions menace star numbers division time quadrilaterals integers triangle numbers balancing multiples binary fractions wordplay trigonometry axes rugby multiplication tournaments square numbers dates palindromes geometric mean sum to infinity remainders dodecagons differentiation probabilty products logic parabolas range games digits unit fractions people maths mean probability lines triangles albgebra surds cube numbers elections factors decahedra hexagons sets cubics pascal's triangle gerrymandering chess percentages

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024